Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

For right-angled Coxeter groups $ z\sp {\vert g\vert }$ is a coefficient of a uniformly bounded representation


Author: Tadeusz Januszkiewicz
Journal: Proc. Amer. Math. Soc. 119 (1993), 1115-1119
MSC: Primary 20F55; Secondary 57M07
MathSciNet review: 1172951
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A Coxeter group $ \Gamma $ is right angled if any exponent in the Coxeter diagram is either $ 2$ or $ \infty $. Using the action of $ \Gamma $ on its Davis complex, we construct a family of cocycles that we use to perturb the left regular representation of $ \Gamma $. In this way, we obtain a family $ {({\pi _z})_{\vert z\vert < 1}}$ of uniformly bounded representations of $ \Gamma $, of which the function $ g \to \vert g\vert$ is a coefficient (where $ \vert g\vert$ denotes the word length of $ g \in \Gamma $).


References [Enhancements On Off] (What's this?)

  • [1] N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris, 1968 (French). MR 0240238
  • [2] M. Bożejko, T. Januszkiewicz, and R. J. Spatzier, Infinite Coxeter groups do not have Kazhdan’s property, J. Operator Theory 19 (1988), no. 1, 63–67. MR 950825
  • [3] Michael W. Davis, Groups generated by reflections and aspherical manifolds not covered by Euclidean space, Ann. of Math. (2) 117 (1983), no. 2, 293–324. MR 690848, 10.2307/2007079
  • [4] Mihai V. Pimsner, Cocycles on trees, J. Operator Theory 17 (1987), no. 1, 121–128. MR 873465
  • [5] T. Pytlik and R. Szwarc, An analytic family of uniformly bounded representations of free groups, Acta Math. 157 (1986), no. 3-4, 287–309. MR 857676, 10.1007/BF02392596
  • [6] Alain Valette, Cocycles d’arbres et représentations uniformément bornées, C. R. Acad. Sci. Paris Sér. I Math. 310 (1990), no. 10, 703–708 (French, with English summary). MR 1055232

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20F55, 57M07

Retrieve articles in all journals with MSC: 20F55, 57M07


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1993-1172951-0
Article copyright: © Copyright 1993 American Mathematical Society