Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Invariant theory of the dual pairs $ (\mathrm{SO}^*(2n), \mathrm{Sp}(2k, \mathbf{C}))$ and $ (\mathrm{Sp}(2n, \mathfrak{R}), \mathrm{O}(N))$


Authors: Eric Y. Leung and Tuong Ton-That
Journal: Proc. Amer. Math. Soc. 120 (1994), 53-65
MSC: Primary 22E46; Secondary 17B99, 22E60
DOI: https://doi.org/10.1090/S0002-9939-1994-1165060-9
MathSciNet review: 1165060
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G \equiv {\text{Sp}}(2k,{\mathbf{C}})$ or $ {\text{O}}(N)$ and $ G' \equiv {\text{S}}{{\text{O}}^{\ast}}(2n)$ or $ {\text{Sp}}(2n,\Re )$. The adjoint representation of $ G'$ on its Lie algebra $ \mathcal{G}'$ gives rise to the coadjoint representation of $ G'$ on the symmetric algebra of all polynomial functions on $ \mathcal{G}'$. The polynomials that are fixed by the restriction of the coadjoint representation to a block diagonal subgroup $ K'$ of $ G'$ form a subalgebra called the algebra of $ K'$-invariants. Using the theory of invariants of Procesi for the "dual pair" $ (G',G)$, a finite set of generators of this algebra is explicitly determined.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 22E46, 17B99, 22E60

Retrieve articles in all journals with MSC: 22E46, 17B99, 22E60


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1165060-9
Keywords: Invariant polynomials, Casimir invariants, dual groups
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society