Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Permutation properties of the polynomials $ 1+x+\cdots+x\sp k$ over a finite field


Author: Rex Matthews
Journal: Proc. Amer. Math. Soc. 120 (1994), 47-51
MSC: Primary 11T06
DOI: https://doi.org/10.1090/S0002-9939-1994-1165062-2
MathSciNet review: 1165062
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that a polynomial of the shape $ 1 + x + \cdots + {x^k}$ is a permutation polynomial over a finite field $ {\mathbb{F}_q}$ of odd characteristic $ p$ if and only if $ k \equiv 1\bmod p(q - 1)$.


References [Enhancements On Off] (What's this?)

  • [1] D. G. Glynn, Two new sequences of ovals in finite Desarguesian planes of even order, Combinatorial Mathematics X (Adelaide 1982), Lecture Notes in Math., vol. 1036, Springer, New York, 1983, pp. 217-229. MR 731584 (85e:51022)
  • [2] -, A condition for the existence of ovals in $ PG(2,q),\,q$ even, Geometriae Dedicata 32 (1989), 247-252. MR 1029677 (90k:51017)
  • [3] J. W. P. Hirschfeld, Projective geometries over finite fields, Clarendon Press, Oxford, 1979. MR 554919 (81h:51007)
  • [4] R. Lidl and W. B. Müller, Permutation polynomials in $ RSA$-cryptosystems, Adv. in Cryptology, Plenum, New York, 1984, pp. 293-301.
  • [5] R. Lidl and G. L. Mullen, When does a polynomial over a finite field permute the elements of the field?, Amer. Math. Monthly 95 (1988), 243-246. MR 1541277
  • [6] R. Lidl and H. Niederreiter, Finite fields, Encyclopedia Math. Appl., vol. 20, Addison-Wesley, Reading, MA, 1983. (Now distributed by Cambridge Univ. Press.) MR 1429394 (97i:11115)
  • [7] R. A. Mollin and C. Small, On permutation polynomials over finite fields, Internat. J. Math. Math. Sci. 10 (1987), 535-544. MR 896608 (88i:11096)
  • [8] B. Segre, Ovals in a finite projective plane, Canad. J. Math. 7 (1955), 414-416. MR 0071034 (17:72g)
  • [9] -, Ovali e curve $ \sigma $ nei piani di Galois di caratteristica due, Atti. Accad. Naz. Lincei Rend. (8) 32 (1962), 785-790. MR 0149361 (26:6851)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11T06

Retrieve articles in all journals with MSC: 11T06


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1165062-2
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society