ON NONNEGATIVE COSINE POLYNOMIALS WITH NONNEGATIVE INTEGRAL COEFFICIENTS

MIHAIL N. KOLOUNTZAKIS

(Communicated by J. Marshall Ash)

Dedicated to S. K. Pichorides

Abstract. We show that there exist \(p_0 > 0 \) and \(p_1, \ldots, p_N \) nonnegative integers, such that

\[
0 \leq p(x) = p_0 + p_1 \cos x + \cdots + p_N \cos Nx
\]

and \(p_0 \ll s^{1/3} \) for \(s = \sum_{j=0}^{N} p_j \), improving on a result of Odlyzko who showed the existence of such a polynomial \(p \) that satisfies \(p_0 \ll (s \log s)^{1/3} \). Our result implies an improvement of the best known estimate for a problem of Erdős and Szekeres. As our method is nonconstructive, we also give a method for constructing an infinite family of such polynomials, given one good "seed" polynomial.

1. Introduction

We consider nonnegative cosine polynomials of the form

\[
0 \leq p(x) = p_0 + p_1 \cos x + p_2 \cos 2x + \cdots + p_N \cos Nx, \quad x \in [0, 2\pi],
\]

where \(p_j \geq 0 \). We also write \(\hat{p}(0) = p_0 \). Notice that \(p(0) = \sum_{j=0}^{N} p_j \) is the maximum of \(p(x) \). We are interested in estimating the size of

\[
M(s) = \inf_{p(0) \geq s} \hat{p}(0)
\]

for \(s \to \infty \). That is, we want to find polynomials of the above form for which \(p_0 = \frac{1}{2\pi} \int_{0}^{2\pi} p(x) \, dx \) is small compared to the maximum of \(p(x) \). In what follows \(C \) denotes an arbitrary positive constant and \(a \ll b \) means \(a \leq Cb \) for some \(C \).

If no more restrictions are imposed on the cosine polynomial \(p(x) \) then \(M(s) = 0 \) for all \(s \). This is because the Fejér kernel

\[
K_A(x) = \sum_{j=-A}^{A} \left(1 - \frac{|j|}{A+1} \right) e^{ijx} = 1 + \sum_{j=1}^{A} \left(1 - \frac{j}{A+1} \right) \cos jx
\]

has constant coefficient 1, has \(K_A(0) \gg A \), and is nonnegative.
If we restrict the coefficients p_1, \ldots, p_N to be either 0 or 1, we have the classical cosine problem, about which we know that for some $\varepsilon > 0$

$$2^{\log s} \ll M(s) \ll s^{1/2}. \tag{1}$$

The upper bound in (1) is easily proved by considering the polynomial

$$f(x) = \left(\sum_{j=1}^{A} \cos 3^j x \right)^2 \tag{2}$$

$$= A + \frac{1}{2} \sum_{j=1}^{A} \cos (2 \cdot 3^j x) + \sum_{k,l=1}^{A} (\cos (3^k + 3^l) x + \cos (3^k - 3^l) x). \tag{3}$$

All cosines in (3) have distinct frequencies. Define $f_1(x) = f(x) + \frac{1}{2} A - \frac{1}{2} \sum_{j=1}^{A} \cos (2 \cdot 3^j x)$. Then $f_1(x) \geq 0$, $f_1(0) \gg A^2$, and f_1 has nonconstant coefficients which are either 0 or 1. The lower bound in (1) is much harder to prove and is due to Bourgain [3]. Earlier, Roth [8] had obtained $M(s) \gg (\log s / \log \log s)^{1/2}$.

From this point on, we will study the case of p_1, \ldots, p_N being arbitrary nonnegative integers. This case was studied by Odlyzko [7] who showed that

$$M(s) \ll (s \log s)^{1/3}. \tag{4}$$

The method is the following. Consider the nonnegative polynomial

$$q(x) = \alpha K_A(x) = q_0 + q_1 \cos x + \cdots + q_A \cos Ax,$$

whose coefficients are not necessarily integers ($\alpha > 0$). We modify q so that its nonconstant coefficients are integers, by adding to it a random polynomial

$$r(x) = r_1 \cos x + \cdots + r_A \cos Ax.$$

The coefficients r_j are independent random variables which take values such that $r_j + q_j$ is always an integer. A theorem of Salem and Zygmund [9] guarantees that $\|r\|_{\infty}$ is small with high probability, and the nonnegative polynomial $p(x) = q(x) + r(x) + \|r\|_{\infty}$ achieves (4) when α is appropriately chosen as a function of A.

Odlyzko studied this problem in connection with a problem posed by Erdös and Szekeres [4]. The problem is to estimate

$$E(n) = \inf \max_{|z|=1} \left| \prod_{k=1}^{n} (1 - z^{a_k}) \right|$$

where a_1, \ldots, a_n may be any positive integers. The inequality

$$\log E(n) \ll M(n) \log(n) \tag{5}$$

holds (see [7]), so that Odlyzko's result implies $\log E(n) \ll n^{1/3} \log^{4/3} n$.

In this paper we replace the random modification in Odlyzko's argument with a more careful modification, based, again, partly on randomization. We use a recent theorem of Spencer [10] which in some cases does better than the Salem-Zygmund theorem. We show in §3 that, when p_1, \ldots, p_N are restricted to be
nonnegative integers, we have $M(s) \ll s^{1/3}$. By (5) this implies $\log E(n) \ll n^{1/3} \log n$. Our method is similar to that used by Beck [2] on a different problem, posed by Littlewood.\footnote{After this paper was submitted for publication the author learned that the method employed for the proof of the basic result has also appeared in [6].}

Both the Salem-Zygmund theorem and Spencer theorem are nonconstructive. In §4 we give a deterministic procedure which, given a polynomial $p(x)$ with nonnegative integral Fourier coefficients (in other words, p_j is a nonnegative even integer, for $j \geq 1$) and with $p(0) \leq (p(0))^{\alpha}$, for some $\alpha > 0$, produces a sequence of polynomials $p = p(0), p(1), p(2), \ldots$, such that $\deg p(n) \to \infty$, $p(n)(0) \to \infty$, and $(p(n)(0)) \leq (p(n)(0))^{\alpha}$. This shows $M(s) \leq C s^{1/\alpha}$, with C dependent on the initial p only.

2. Bounds on random trigonometric polynomials

In [7] the following classical theorem was used to estimate the size of a random polynomial.

Theorem 1 (Salem and Zygmund [9; 5, p. 69]). Let $f_1(x), \ldots, f_n(x)$ be trigonometric polynomials of degree at most m and ξ_1, \ldots, ξ_n be independent random variables, which satisfy $\mathbb{E} e^{i \xi_j} \leq e^{\lambda^2/2}$ for all j and $\lambda > 0$ (subnormal random variables). Write

\[f(x) = \sum_{j=1}^{n} \xi_j f_j(x). \]

Then, for some $C > 0$,

\[\Pr \left(\|f\|_\infty \geq C \left(\sum_{j=1}^{n} \|f_j\|_\infty^2 \log m \right)^{1/2} \right) \leq \frac{1}{m^2}. \]

Theorem 1 was used in [7] to change the coefficients of a polynomial to integers without a big loss:

Corollary 1. Let $p(x) = p_0 + \sum_{j=1}^{N} p_j \cos jx$ and define the random polynomial $r(x)$ so that $p(x) + r(x)$ always has integral coefficients (except perhaps the constant coefficient):

\[r(x) = \sum_{j=1}^{N} \xi_j \cos jx \]

with $\xi_j = 0$ if p_j is an integer, else

\[\xi_j = \begin{cases} \lfloor p_j \rfloor - p_j & \text{with probability } \lfloor p_j \rfloor - p_j, \\ \lceil p_j \rceil - p_j & \text{with probability } p_j - \lceil p_j \rceil. \end{cases} \]

Then $\Pr (\|r\|_\infty \ll (N \log N)^{1/2}) \to 1$, as $N \to \infty$.

Proof of Corollary 1. The above defined ξ_j are subnormal (see, e.g., [1, p. 235, Lemma A.6]). Theorem 1 can now be applied. □
The following theorem of Spencer [10] is sometimes better than the Salem-Zygmund theorem, though unfortunately only in the symmetric case \(\xi_j = \pm 1 \) (Rademacher random variables).

Theorem 2 (Spencer [10]). Let \(a_{ij}, \ i = 1, \ldots, n_1, \ j = 1, \ldots, n_2 \) be such that \(|a_{ij}| \leq 1 \). Then there are signs \(\varepsilon_1, \ldots, \varepsilon_{n_2} \in \{-1, 1\} \) such that, for all \(i \),

\[
\sum_{j=1}^{n_2} \varepsilon_j a_{ij} \leq C n_1^{1/2}.
\]

Notice there is no dependence of the bound on \(n_2 \).

Corollary 2. Let \(f_1(x), \ldots, f_n(x), \|f_j\|_{\infty} \leq C \), be trigonometric polynomials of degree at most \(m \). Then there is a choice of signs \(\varepsilon_1, \ldots, \varepsilon_n \in \{-1, 1\} \) such that

\[
\sum_{j=1}^{n} \varepsilon_j f_j \leq C m^{1/2}.
\]

Proof of Corollary 2. For \(i = 1, \ldots, 10m, \ j = 1, \ldots, n \), define \(a_{ij} = f_j(x_i) \), where \(x_i = i \frac{2\pi}{10m} \). Let \(\varepsilon_1, \ldots, \varepsilon_n \) be the sequence of signs given by Theorem 2 for the matrix \(a_{ij} \) and write \(f = \sum_{j=1}^{n} \varepsilon_j f_j \). There is \(x_0 \in [0, 2\pi] \) such that \(|f(x_0)| = \|f\|_{\infty} \). For some \(k \) we have \(|x_k - x_0| \leq \frac{2\pi}{10m} \). By Bernstein’s inequality, \(\|f''\|_{\infty} \leq m \|f\|_{\infty} \), we get

\[
|f(x_0) - f(x_k)| \leq \frac{2\pi}{10m} \|f''\|_{\infty} \leq \frac{2\pi}{10} |f(x_0)|
\]

which, since \(\frac{2\pi}{10} < 1 \), implies

\[
\|f\|_{\infty} = |f(x_0)| \leq C |f(x_k)| = C \left| \sum_{j=1}^{n} \varepsilon_j a_{kj} \right| \leq C m^{1/2},
\]

and the proof is complete. \(\square \)

Corollary 2 is better than Theorem 1 only when \(m/\log m = o(n) \). It is a strictly symmetric result and cannot directly be applied to modify a polynomial \(p(x) \) so that it has integral coefficients, as we need to do in our case. We show in §3 that a sequence of applications of Corollary 2 is needed.

3. Proof of the Inequality \(M(s) \ll s^{1/3} \)

Since Corollary 2 only allows us to choose random signs, we cannot use it directly (as we used the Salem-Zygmund theorem) to modify the coefficients of a polynomial to integers, while controlling the size of the change. In this section we show how to modify the coefficients little by little to achieve the same result. Let \(\alpha > 0 \) and define

\[
a(x) = \alpha K_A(x) = \sum_{j=0}^{A} a_j \cos jx.
\]
Suppose \(\varepsilon > 0 \) and the nonnegative integer \(k_0 \) is such that for some nonnegative integers \(b_j \)
\[
|a_j - b_j2^{-k_0}| \leq \varepsilon \quad \text{for all } j = 1, \ldots, A.
\]
We shall define a finite sequence of polynomials
\[
a^{(0)}(x) = a_0 + \sum_{j=1}^{A} b_j2^{-k_0} \cos jx, \quad a^{(1)}(x), \ldots, a^{(k_0)}(x)
\]
inductively, so that if \(a^{(k)}(x) = a_0 + \sum_{j=1}^{A} a_j^{(k)} \cos jx \) then, for each \(j = 1, \ldots, A \),
\[
a_j^{(k)} = b_j^{(k)}2^{-k_0}
\]
for some nonnegative integers \(b_j^{(k)} \). We define inductively the coefficients of \(a^{(k+1)} \) as follows. If \(b_j^{(k)}, j > 0, \) is even then \(a_j^{(k+1)} = a_j^{(k)} \). Else define
\[
a_j^{(k+1)} = a_j^{(k)} + \varepsilon_j^{(k)}2^{k-k_0}
\]
where \(\varepsilon_j^{(k)} \in \{-1, 1\} \) are such that
\[
\left| \sum_{b_j^{(k)} \text{ odd}} \varepsilon_j^{(k)} \cos jx \right| \leq CA^{1/2}.
\]
The existence of the signs \(\varepsilon_j^{(k)} \) is guaranteed by Corollary 2. Notice that (8) implies the preservation of (7) by the inductive definition. We deduce from (9) that
\[
\|a^{(k+1)} - a^{(k)}\|_\infty \leq C2^{k-k_0}A^{1/2}.
\]
The polynomial \(a^{(k_0)} \) has integral coefficients (except perhaps for the constant coefficient). Summing (10) we get
\[
\|a - a^{(k_0)}\|_\infty \leq \|a - a^{(0)}\|_\infty + \|a^{(0)} - a^{(k_0)}\|_\infty \leq A\varepsilon + CA^{1/2}.
\]
Choose \(\varepsilon = 1/A \) to get \(\|a - a^{(k_0)}\|_\infty \leq CA^{1/2} \). On the other hand, the coefficients of \(a \) and \(a^{(k_0)} \) differ by at most 1, and this implies that for the nonnegative polynomial \(p(x) = a^{(k_0)}(x) + \|a - a^{(k_0)}\|_\infty \) we have
\[
p(0) \geq a(0) - A \geq C\alpha A - A,
\]
\[
\tilde{p}(0) = \alpha + \|a - a^{(k_0)}\|_\infty \leq \alpha + CA^{1/2}.
\]
Select \(\alpha = A^{1/2} \) to get \(\tilde{p}(0) \ll A^{1/2} \) and \(p(0) \gg A^{3/2} \). Since \(p \) has integral coefficients, we have exhibited a polynomial that achieves \(M(s) \ll s^{1/3} \), and the proof is complete. \(\Box \)

Remark on cosine sums. Applying the method of the preceding proof on the coefficients of the Fejér kernel \(K_A(x) \), one ends up with a nonnegative polynomial
of degree at most \(A \), which is of the form

\[
p(x) = p_0 + 2 \sum_{j=1}^{k} \cos \lambda_j x
\]

where \(\lambda_j \in \{1, \ldots, A\} \) are distinct. We have \(\| K_A - p \|_\infty \ll A^{1/2} \) which, since

\[
p_0 = \frac{1}{2\pi} \int_{0}^{2\pi} p(x) \, dx,
\]

implies

\[
p_0 \ll A^{1/2} \quad \text{and} \quad p(0) \gg A.
\]

Thus \(p \) is a new example of a cosine sum that achieves the upper bound in (1). It is not as simple as the one mentioned in the introduction but the spectrum of it is much denser: \(\frac{1}{2} A + O(A^{1/2}) \) cosines with frequencies from 1 to \(A \).

Since the Dirichlet kernel

\[
D_A(x) = \sum_{j=-A}^{A} e^{ijx}
\]

(13)

\[
= 1 + 2 \sum_{j=1}^{A} \cos jx
\]

(14)

\[
= \frac{\sin (A + \frac{1}{2})x}{\sin \frac{x}{2}}
\]

(15)

has a minimum asymptotically equal to \(- \frac{4}{3\pi} A\), it is conceivable that one may be able to raise the above number of cosine from \(\frac{1}{2} A + O(A^{1/2}) \) to

\[
\left(1 - \frac{2}{3\pi}\right) A + o(A).
\]

In other words, since

\[
\min x \sum_{j=1}^{A} \cos jx = - \frac{2}{3\pi} A + o(A),
\]

one must remove at least \(\frac{2}{3\pi} A \) cosines from the above sum in order to make its minimum \(o(A) \) in absolute value.

Note added in proof. The author has now proved that \(\frac{1}{2} A + o(A) \) is best possible.

4. The construction

Suppose we are given a polynomial \(p(x) \geq 0 \) of degree \(d \), whose nonconstant coefficients are even nonnegative integers, which satisfies

\[
\hat{p}(0) \leq (p(0))^\alpha
\]

for some \(\alpha > 0 \). Define the infinite sequence of nonnegative polynomials

\[
p = p^{(1)}, p^{(2)}, p^{(3)}, \ldots,
\]

with the recursive formula

\[
p^{(k+1)}(x) = p^{(k)}((d + 1)x) \cdot p(x).
\]

(16)
Since p has even nonconstant coefficients, the Fourier coefficients of all $p^{(k)}$ are nonnegative integers. The spectrum of the first factor in (16) is supported by the multiples of $d + 1$, and that of the second factor is supported by the interval $[-d, d]$. This implies that $(p^{(k+1)})^{(0)} = (p^{(k)})^{(0)}\tilde{p}(0)$. We obviously have $p^{(k+1)}(0) = p^{(k)}(0)p(0)$. We conclude that for all $k \geq 0$

$$(p^{(k)})^{(0)} = (\tilde{p}(0))^k \quad \text{and} \quad p^{(k)}(0) = (p(0))^k,$$

and consequently

$$(p^{(k)})^{(0)} \leq (p^{(k)}(0))^a.$$

So, if s is a power of $p(0)$, we have $M(s) \leq s^a$, and for any s we have $M(s) \leq Cs^a$, where $C = (p(0))^a$.

As an example we give

$$p(x) = 4 + 4\cos x + 2\sum_{j=2}^{10}\cos jx$$

which can be checked numerically to be positive and has constant coefficient $\tilde{p}(0) = 4$ and $p(0) = 26$. This gives $\alpha = \log 4 / \log 26 = 0.42549\ldots$.

In view of the above construction, finding a single polynomial p with $\tilde{p}(0) \leq (p(0))^a$, with $\alpha < \frac{1}{2}$, will prove that the result in this paper is not the best possible. The above example was actually found by a computer, but if no more insight is gained into how these good “seed” polynomials look, the computing time grows dramatically as we increase the degree of the polynomial.

ACKNOWLEDGMENT

I would like to thank P. J. Cohen and A. M. Odlyzko for their help.

REFERENCES

Department of Mathematics, Stanford University, Stanford, California 94305

E-mail address: kolount@cauchy.stanford.edu

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use