Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Existence of periodic solutions for nonlinear evolution equations in Hilbert spaces


Author: Norimichi Hirano
Journal: Proc. Amer. Math. Soc. 120 (1994), 185-192
MSC: Primary 34G20; Secondary 34A60, 34C25, 35K55
MathSciNet review: 1174494
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we consider the existence and multiplicity of periodic solutions of the problem $ u' + Au \ni g(t,u)$ where $ A$ is a subdifferential of a convex function defined in a Hilbert space $ H$ and $ g:R \times H \to H$ is a Carathéodory function periodic with respect to the first variable.


References [Enhancements On Off] (What's this?)

  • [1] V. Barbu, Nonlinear semigroups and differential equations in Banach spaces, Editura Academiei, 1976. MR 0390843 (52:11666)
  • [2] R. I. Becker, Periodic solutions of semilinear equations of evolutions of compact type, J. Math. Anal. Appl. 82 (1981), 33-48. MR 626739 (84a:34068)
  • [3] H. Brézis, Equations et inequations nonlineaires dans des espace vectoriels en dualite, Ann. Inst. Fourier (Grenoble) 18 (1968), 115-175. MR 0270222 (42:5113)
  • [4] -, Operateurs maximaux monotones, North-Holland, Amsterdam, 1973.
  • [5] F. E. Browder, Existence of periodic solutions for nonlinear equations of evolution, Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 1100-1103. MR 0177295 (31:1558)
  • [6] J. H. Deimling, Periodic solutions of differential equations in Banach spaces, Manuscripta Math. 24 (1978), 31-44. MR 0499551 (58:17384)
  • [7] N. Hirano, Existence of multiple periodic solutions for a semilinear evolution equations, Proc. Amer. Math. Soc. 106 (1989), 107-114. MR 953007 (90d:35019)
  • [8] J. Prüss, Periodic solutions of semilinear evolution equations, Nonlinear Anal. 3 (1979), 221-235. MR 541871 (81a:34061)
  • [9] I. Vrabie, Periodic solutions for nonlinear evolution equations in a Banach space, Proc. Amer. Math. Soc. 109 (1990), 653-661. MR 1015686 (90k:34080)
  • [10] -, Nonlinear version of Pazy's local existence theorem, Israel J. Math. 32 (1979), 221-235. MR 531265 (82a:47064)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34G20, 34A60, 34C25, 35K55

Retrieve articles in all journals with MSC: 34G20, 34A60, 34C25, 35K55


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1994-1174494-8
Keywords: Accretive operator, periodic solution, nonlinear evolution equations
Article copyright: © Copyright 1994 American Mathematical Society