Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

A remark on Dunford-Pettis property in $ L\sb 1(\mu,X)$


Author: Raffaella Cilia
Journal: Proc. Amer. Math. Soc. 120 (1994), 183-184
MSC: Primary 46E40; Secondary 46B20, 46M05
DOI: https://doi.org/10.1090/S0002-9939-1994-1176480-0
MathSciNet review: 1176480
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that if $ X$ is an $ {L_\infty }$ space, then $ {L_1}(\mu ,X)$ has the Dunford-Pettis Property.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46E40, 46B20, 46M05

Retrieve articles in all journals with MSC: 46E40, 46B20, 46M05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1176480-0
Keywords: Dunford-Pettis property, Bochner integrable functions, $ {L_\infty }$ space
Article copyright: © Copyright 1994 American Mathematical Society