Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Parabolicity of a class of higher order abstract differential equations


Authors: Ti Jun Xio and Jin Liang
Journal: Proc. Amer. Math. Soc. 120 (1994), 173-181
MSC: Primary 34G10; Secondary 47D09
DOI: https://doi.org/10.1090/S0002-9939-1994-1182708-3
MathSciNet review: 1182708
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ E$ be a complex Banach space, $ {c_i} \in \mathbb{C}\;(1 \leqslant i \leqslant n - 1)$, and $ A$ be a nonnegative operator in $ E$. We discuss the parabolicity of the higher-order abstract differential equations

$\displaystyle {u^{(n)}}(t) + \sum\limits_{i = 1}^{n - 1} {{c_i}{A^{{k_i}}}{u^{(n - i)}}(t) + Au(t) = 0}$ ($ \ast$)

and some perturbation cases of ($ \ast$). A sufficient and necessary condition for ($ \ast$) to be parabolic is obtained, provided $ {k_1} > {k_2} - {k_1} > \cdots > 1 - {k_{n - 1}} > 0,\;{c_i} \ne 0\;(1 \leqslant i \leqslant n - 1)$. For $ A$ strictly nonnegative (Definition 1.3), $ n = 3,{c_1},{c_2} \geqslant 0$, a sharp criterion is given.

References [Enhancements On Off] (What's this?)

  • [1] G. Chen and D. L. Russell, A mathematical model for linear elastic system with structural damping, Quart. Appl. Math. 39 (1982), 433-454. MR 644099 (83f:70034)
  • [2] S. Chen and R. Triggiani, Proof of two conjectures of G. Chen and D. L. Russell on structural damping for elastic systems, Proc. Seminar in Approximation and Optimization (University of Havana, Cuba, January 12-14, 1987), Lecture Notes in Math., vol. 1354, Springer-Verlag, New York, 1988, pp. 234-256. Also, Proc. First Conf. in Communication and Control Theory honoring A. V. Balakrishnan on his sixtieth birthday (Washington DC, June 17-19, 1987), Optimization Software, 1988. MR 996678 (90j:34088)
  • [3] -, Proof of extensions of two conjectures on structural damping for elastic systems, Pacific J. Math. 136 (1989), 15-55. MR 971932 (90g:47071)
  • [4] H. O. Fattorini, The Cauchy problem, Encyclopedia Math. Appl., vol. 18, Addison-Wesley, Reading, MA, 1983. MR 692768 (84g:34003)
  • [5] A. Favini and E. Obrecht, Conditions for parabolicity of second order abstract differential equations, Differential Integral Equations 4 (1991), 1005-1022. MR 1123349 (92m:47078)
  • [6] F. L. Huang, On the holomorphic property of the semigroup associated with linear elastic systems with structural damping, Acta Math. Sci. (Chinese) 55 (1985), 271-277. MR 856278 (87m:47094)
  • [7] -, A problem for linear elastic systems with structural damping, Acta Math. Sci. 6 (1986), 107-113.
  • [8] -, On the mathematical model for linear elastic systems with analytic damping, SIAM J. Control Optim. 26 (1988), 714-724. MR 937680 (89k:34106)
  • [9] -, Some problems for linear elastic systems with damping, Acta Math. Sci. 10 (1990), 319-326. MR 1099672 (92h:34114)
  • [10] E. Obrecht, Sul problema di Cauchy per le equazioni paraboliche astratte di ordine $ n$, Rend. Sem. Mat. Univ. Padova 53 (1975), 231-256. MR 0419972 (54:7989)
  • [11] T. J. Xio and J. Liang, Analyticity of the propagators of second order linear differential equations in Banach spaces, Semigroup Forum 44 (1992), 356-363. MR 1152544 (93c:47047)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34G10, 47D09

Retrieve articles in all journals with MSC: 34G10, 47D09


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1182708-3
Keywords: Parabolicity, higher-order abstract differential equation, nonnegative operator, strictly nonnegative, perturbation
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society