Parabolicity of a class of higher order abstract differential equations

Authors:
Ti Jun Xio and Jin Liang

Journal:
Proc. Amer. Math. Soc. **120** (1994), 173-181

MSC:
Primary 34G10; Secondary 47D09

DOI:
https://doi.org/10.1090/S0002-9939-1994-1182708-3

MathSciNet review:
1182708

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a complex Banach space, , and be a nonnegative operator in . We discuss the parabolicity of the higher-order abstract differential equations

() |

and some perturbation cases of (). A sufficient and necessary condition for () to be parabolic is obtained, provided . For strictly nonnegative (Definition 1.3), , a sharp criterion is given.

**[1]**G. Chen and D. L. Russell,*A mathematical model for linear elastic system with structural damping*, Quart. Appl. Math.**39**(1982), 433-454. MR**644099 (83f:70034)****[2]**S. Chen and R. Triggiani,*Proof of two conjectures of G. Chen and D. L. Russell on structural damping for elastic systems*, Proc. Seminar in Approximation and Optimization (University of Havana, Cuba, January 12-14, 1987), Lecture Notes in Math., vol. 1354, Springer-Verlag, New York, 1988, pp. 234-256. Also, Proc. First Conf. in Communication and Control Theory honoring A. V. Balakrishnan on his sixtieth birthday (Washington DC, June 17-19, 1987), Optimization Software, 1988. MR**996678 (90j:34088)****[3]**-,*Proof of extensions of two conjectures on structural damping for elastic systems*, Pacific J. Math.**136**(1989), 15-55. MR**971932 (90g:47071)****[4]**H. O. Fattorini,*The Cauchy problem*, Encyclopedia Math. Appl., vol. 18, Addison-Wesley, Reading, MA, 1983. MR**692768 (84g:34003)****[5]**A. Favini and E. Obrecht,*Conditions for parabolicity of second order abstract differential equations*, Differential Integral Equations**4**(1991), 1005-1022. MR**1123349 (92m:47078)****[6]**F. L. Huang,*On the holomorphic property of the semigroup associated with linear elastic systems with structural damping*, Acta Math. Sci. (Chinese)**55**(1985), 271-277. MR**856278 (87m:47094)****[7]**-,*A problem for linear elastic systems with structural damping*, Acta Math. Sci.**6**(1986), 107-113.**[8]**-,*On the mathematical model for linear elastic systems with analytic damping*, SIAM J. Control Optim.**26**(1988), 714-724. MR**937680 (89k:34106)****[9]**-,*Some problems for linear elastic systems with damping*, Acta Math. Sci.**10**(1990), 319-326. MR**1099672 (92h:34114)****[10]**E. Obrecht,*Sul problema di Cauchy per le equazioni paraboliche astratte di ordine*, Rend. Sem. Mat. Univ. Padova**53**(1975), 231-256. MR**0419972 (54:7989)****[11]**T. J. Xio and J. Liang,*Analyticity of the propagators of second order linear differential equations in Banach spaces*, Semigroup Forum**44**(1992), 356-363. MR**1152544 (93c:47047)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
34G10,
47D09

Retrieve articles in all journals with MSC: 34G10, 47D09

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1994-1182708-3

Keywords:
Parabolicity,
higher-order abstract differential equation,
nonnegative operator,
strictly nonnegative,
perturbation

Article copyright:
© Copyright 1994
American Mathematical Society