Spectral theorem for unbounded strongly continuous groups on a Hilbert space

Authors:
Khristo Boyadzhiev and Ralph deLaubenfels

Journal:
Proc. Amer. Math. Soc. **120** (1994), 127-136

MSC:
Primary 47D03; Secondary 47A60

DOI:
https://doi.org/10.1090/S0002-9939-1994-1186983-0

MathSciNet review:
1186983

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Suppose is a closed, densely defined linear operator on a Hilbert space and . Denote by .

We show that has an functional calculus, for all , if and only if generates a strongly continuous group of operators of exponential type . We obtain specific upper bounds on , in terms of .

Corollaries include the spectral theorem for closed operators on a Hilbert space and a generalization of a result due to McIntosh relating imaginary powers and functional calculi.

**[1]**J.-B. Baillon and Ph. Clément,*Examples of unbounded imaginary powers of operators*, J. Funct. Anal.**100**(1991), no. 2, 419–434. MR**1125234**, https://doi.org/10.1016/0022-1236(91)90119-P**[2]**M. Balabane, H. Emamirad, and M. Jazar,*Spectral distributions and generalization of Stone's theorem*, Math. Z. (to appear).**[3]**Khristo N. Boyadzhiev and Ralph J. deLaubenfels,*𝐻^{∞} functional calculus for perturbations of generators of holomorphic semigroups*, Houston J. Math.**17**(1991), no. 1, 131–147. MR**1107193****[4]**K. Boyadzhiev and R. deLaubenfels,*Semigroups and resolvents of bounded variation, imaginary powers and 𝐻^{∞} functional calculus*, Semigroup Forum**45**(1992), no. 3, 372–384. MR**1179859**, https://doi.org/10.1007/BF03025777**[5]**Ioana Ciorănescu and László Zsidó,*Analytic generators for one-parameter groups*, Tôhoku Math. J. (2)**28**(1976), no. 3, 327–362. MR**0430867**, https://doi.org/10.2748/tmj/1178240775**[6]**M. Cowling, I. Doust, A. McIntosh, and A. Yagi,*Banach space operators with an**functional calculus*, in preparation.**[7]**Edward Brian Davies,*One-parameter semigroups*, London Mathematical Society Monographs, vol. 15, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1980. MR**591851****[8]**Ralph deLaubenfels,*Unbounded holomorphic functional calculus and abstract Cauchy problems for operators with polynomially bounded resolvents*, J. Funct. Anal.**114**(1993), no. 2, 348–394. MR**1223706**, https://doi.org/10.1006/jfan.1993.1070**[9]**Giovanni Dore and Alberto Venni,*On the closedness of the sum of two closed operators*, Math. Z.**196**(1987), no. 2, 189–201. MR**910825**, https://doi.org/10.1007/BF01163654**[10]**Giovanni Dore and Alberto Venni,*Some results about complex powers of closed operators*, J. Math. Anal. Appl.**149**(1990), no. 1, 124–136. MR**1054798**, https://doi.org/10.1016/0022-247X(90)90290-V**[11]**Xuan Thinh Duong,*𝐻_{∞} functional calculus of elliptic operators with 𝐶^{∞} coefficients on 𝐿^{𝑝} spaces of smooth domains*, J. Austral. Math. Soc. Ser. A**48**(1990), no. 1, 113–123. MR**1026842****[12]**-,*functional calculus of second order elliptic**on**spaces*, Miniconference on Operators in Analysis, Proc. Center Math. Anal. Austral. Nat. Univ., vol. 24, Austral. Nat. Univ., Canberra, 1989, pp. 91-102.**[13]**J. A. Goldstein,*Semigroups of operators and applications*, Oxford, New York, 1985.**[14]**Erich Marschall,*On the analytical generator of a group of operators*, Indiana Univ. Math. J.**35**(1986), no. 2, 289–309. MR**833395**, https://doi.org/10.1512/iumj.1986.35.35017**[15]**Alan McIntosh,*Operators which have an 𝐻_{∞} functional calculus*, Miniconference on operator theory and partial differential equations (North Ryde, 1986) Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 14, Austral. Nat. Univ., Canberra, 1986, pp. 210–231. MR**912940****[16]**A. McIntosh and A. Yagi,*Operators of type**without a bounded*-*functional calculus*, Miniconference on Operators in Analysis, Proc. Center Math. Anal. Austral. Nat. Univ., vol. 24, Austral. Nat. Univ., Canberra, 1989.**[17]**Jan Prüss and Hermann Sohr,*On operators with bounded imaginary powers in Banach spaces*, Math. Z.**203**(1990), no. 3, 429–452. MR**1038710**, https://doi.org/10.1007/BF02570748**[18]**Werner J. Ricker,*Spectral properties of the Laplace operator in 𝐿^{𝑝}(𝑅)*, Osaka J. Math.**25**(1988), no. 2, 399–410. MR**957870****[19]**Atsushi Yagi,*Applications of the purely imaginary powers of operators in Hilbert spaces*, J. Funct. Anal.**73**(1987), no. 1, 216–231. MR**890664**, https://doi.org/10.1016/0022-1236(87)90066-8

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
47D03,
47A60

Retrieve articles in all journals with MSC: 47D03, 47A60

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1994-1186983-0

Article copyright:
© Copyright 1994
American Mathematical Society