Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Torsion units in integral group rings


Author: Angela Valenti
Journal: Proc. Amer. Math. Soc. 120 (1994), 1-4
MSC: Primary 20C05; Secondary 16S34, 16U60
DOI: https://doi.org/10.1090/S0002-9939-1994-1186996-9
MathSciNet review: 1186996
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G = \left\langle a \right\rangle \rtimes X$ where $ \left\langle a \right\rangle $ is a cyclic group of order $ n,X$ is an abelian group of order $ m$, and $ (n,m) = 1$. We prove that if $ \mathbb{Z}G$ is the integral group ring of $ G$ and $ H$ is a finite group of units of augmentation one of $ \mathbb{Z}G$, then there exists a rational unit $ \gamma $ such that $ {H^\gamma } \subseteq G$.


References [Enhancements On Off] (What's this?)

  • [1] G. H. Cliff, S. K. Sehgal, and A. R. Weiss, Units of integral group rings of metabelian groups, J. Algebra 73 (1981), 167-185. MR 641639 (83i:20006)
  • [2] I. S. Luthar and P. Trama, Zassenhaus conjecture for certain integral group rings, J. Indian Math. Soc. 55 (1990), 199-212. MR 1088139 (92b:20008)
  • [3] C. P. Milies and S. K. Sehgal, Torsion units in integral group rings of metacyclic groups, J. Number Theory 19 (1984), 103-114. MR 751167 (86i:16009)
  • [4] C. P. Milies, J. Ritter, and S. K. Sehgal, On a conjecture of Zassenhaus on torsion units in integral group rings. II, Proc. Amer. Math. Soc. 97 (1986), 201-206. MR 835865 (87i:16013)
  • [5] J. Ritter and S. K. Sehgal, On a conjecture of Zassenhaus on torsion units in integral group rings, Math. Ann. 264 (1983), 257-270. MR 711882 (85e:16014)
  • [6] S. K. Sehgal, Topics in group rings, Dekker, New York, 1978. MR 508515 (80j:16001)
  • [7] -, Lectures on group rings, Univ. of Palermo, 1991.
  • [8] A. Weiss, Rigidity of $ p$-adic $ p$-torsion, Ann. of Math. (2) 127 (1988), 317-332. MR 932300 (89g:20010)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20C05, 16S34, 16U60

Retrieve articles in all journals with MSC: 20C05, 16S34, 16U60


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1186996-9
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society