Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Classification of Cohen-Macaulay modules of covariants for systems of binary forms


Author: Bram Broer
Journal: Proc. Amer. Math. Soc. 120 (1994), 37-45
MSC: Primary 13A50; Secondary 11E76, 13D40
DOI: https://doi.org/10.1090/S0002-9939-1994-1189743-X
MathSciNet review: 1189743
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For every module of covariants for a system of binary forms a formula is given, measuring to what extent Stanley's functional equation fails to be satisfied. As an application a new proof is given for the classification of the Cohen-Macaulay modules of covariants for systems of binary forms.


References [Enhancements On Off] (What's this?)

  • [1] M. Van den Bergh, A converse to Stanley's conjecture for $ {\text{S}}{{\text{L}}_2}$, preprint 89-38, Nov. 1989, Universitaire Instelling Antwerpen.
  • [2] -, Cohen-Macaulayness of modules of covariants, Invent. Math 106 (1991), 389-409. MR 1128219 (92m:14063)
  • [3] A. Broer, On the generating functions associated to a system of binary forms, Indag. Math. (N.S.) 1 (1990), 15-25. MR 1054762 (91d:13008)
  • [4] M. Brion, Sur les modules des covariants, Ann. Sci. École. Norm. Sup. 26 (1993), 1-21. MR 1209911 (95c:14062)
  • [5] E. G. Evans and P. Griffith, Syzygies, Cambridge Univ. Press, Cambridge, MA, 1985. MR 811636 (87b:13001)
  • [6] S. Goto and K. Watanabe, On graded rings. I, J. Math. Soc. Japan 30 (1978), 179-213. MR 494707 (81m:13021)
  • [7] M. Hochster and J. L. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Adv. in Math. 13 (1974), 115-175. MR 0347810 (50:311)
  • [8] G. W. Schwarz, Representations of simple Lie groups with a free module of covariants, Invent. Math. 50 (1978), 1-12. MR 516601 (80c:14008)
  • [9] P. Slodowy, Der Scheibensatz für algebraische Transformationsgruppen, Algebraische Transformationsgruppen und Invariantentheorie. Algebraic Transformation Groups and Invariant Theory (H. Kraft, P. Slodowy, and T. A. Springer, eds.), DMV Seminar, Band 13, Birkhäuser Verlag, Basel, 1989. MR 1044582 (91m:14074)
  • [10] R. P. Stanley, Combinatorics and invariant theory, Proc. Sympos. Pure Math., vol. 34, Amer. Math. Soc., Providence, RI, 1979, pp. 345-355. MR 525334 (80e:15020)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 13A50, 11E76, 13D40

Retrieve articles in all journals with MSC: 13A50, 11E76, 13D40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1189743-X
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society