Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Hypersurfaces satisfying the equation $ \Delta x=Rx+b$


Author: Joonsang Park
Journal: Proc. Amer. Math. Soc. 120 (1994), 317-328
MSC: Primary 53C50
MathSciNet review: 1189750
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that a hypersurface in a space form or in Lorentzian space whose immersion $ x$ satisfies $ \Delta x = Rx + b$ is minimal or isoparametric. In particular, we locally classify such hypersurfaces which are not minimal.


References [Enhancements On Off] (What's this?)

  • [AFL] L. J. Alías, A. Ferrández, and P. Lucas, Surfaces in the $ 3$-dimensional space satisfying $ \Delta x = Ax + B$, preprint.
  • [C1] É. Cartan, Sur les variétés de courbure constante dans l'éspace euclidien ou non euclidien I, Bull. Soc. Math. France 47 (1919), 125-160. MR 1504786
  • [C2] -, Sur les variétés de courbure constante dans l'éspace euclidien ou non euclidien II, Bull. Soc. Math. France 48 (1920), 132-208. MR 1504796
  • [G] O. J. Garay, An extension of Takahashi's Theorem, Geom. Dedicata 34 (1990), 105-112. MR 1061282 (91h:53008)
  • [Ma] M. A. Magid, Lorentzian isoparametric hypersurfaces, Pacific J. Math. 118 (1985), 165-197. MR 783023 (87b:53097)
  • [M] H. F. Münzner, Isoparametrische Hyperflächen in Sphären I, Math. Ann. 251 (1980), 57-71. MR 583825 (82a:53058)
  • [O] B. O'Neill, Semi-Riemannian geometry with applications to relativity, Academic Press, New York, 1983. MR 719023 (85f:53002)
  • [PT] R. S. Palais and C. L. Terng, Critical point theory and submanifold geometry, Lecture Notes in Math., vol. 1353, Springer-Verlag, New York, 1988. MR 972503 (90c:53143)
  • [S] B. Segré, Famiglie di ipersuperifici isoparametriche neglie spazi euclidei ad un qualunque numero di dimension, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 27 (1938), 203-207.
  • [T] T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18 (1966), 380-385. MR 0198393 (33:6551)
  • [W] B. L. Wu, Lorentzian isoparametric submanifolds, Ph.D. Thesis, Brandeis University, 1991.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C50

Retrieve articles in all journals with MSC: 53C50


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1189750-7
Article copyright: © Copyright 1994 American Mathematical Society