Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Automorphisms of $ P(V)\sb G$

Author: Thomas Sperlich
Journal: Proc. Amer. Math. Soc. 120 (1994), 5-11
MSC: Primary 20F55; Secondary 13A50
MathSciNet review: 1200179
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper gives a proof of the theorem that for Coxeter groups the algebra of coinvariants is isomorphic to the normalizer of the Coxeter group in the linear group of a vector space over $ \mathbb{R}$. I have tried to give a relatively elementary proof which requires only elementary algebra and a little knowledge of the theory of invariants.

References [Enhancements On Off] (What's this?)

  • [1] N. Bourbaki, Groupes et algèbres de Lie, Éléments de Mathematique, Chapitres 4, 5, 6, Hermann, Paris, 1968. MR 0240238 (39:1590)
  • [2] C. Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math. 77 (1955), 778-782. MR 0072877 (17:345d)
  • [3] L. Flatto, Topological vector spaces, Enseign. Math. 24 (1978).
  • [4] L. C. Grove and C. T. Benson, Finite reflection groups, 2nd ed., Springer, New York, 1971. MR 0383218 (52:4099)
  • [5] H. Hiller, Geometry of Coxeter groups, Research Notes in Math., vol. 54, Pitman Advanced Publishing Program, New York, 1982. MR 649068 (83h:14045)
  • [6] James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Math., vol., 9, Springer, New York, 1972. MR 0323842 (48:2197)
  • [7] S. Papadima, Rigidity properties of compact Lie groups modulo maximal tori, Math. Ann. 275 (1986), 637-652. MR 859335 (88b:53063)
  • [8] J. P. Serre, Linear representations of finite groups, Springer, New York, 1977. MR 0450380 (56:8675)
  • [9] -, Algèbres de Lie semi-simples et complexes, Benjamin, New York, 1966.
  • [10] G. C. Shepard and J. A. Todd, Finite unitary reflection groups, Canad. J. Math. 6 (1954), 274-304. MR 0059914 (15:600b)
  • [11] L. Smith, A note on realisation of graded complete intersection algebras by cohomology of space, Quart. J. Math. Oxford Ser. (2) 33 (1982), 379-384. MR 668184 (84a:57044a)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20F55, 13A50

Retrieve articles in all journals with MSC: 20F55, 13A50

Additional Information

Article copyright: © Copyright 1994 American Mathematical Society