Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Invariant measures of symmetric Lévy processes


Author: Jiangang Ying
Journal: Proc. Amer. Math. Soc. 120 (1994), 267-273
MSC: Primary 60J30
DOI: https://doi.org/10.1090/S0002-9939-1994-1200181-3
MathSciNet review: 1200181
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If $ \pi = \{ {\pi _t}:t > 0\} $ is a symmetric convolution semigroup with the Lévy exponent $ \phi $, then supp $ {\pi _t}$, is a group determined by $ \phi $, and $ \pi $ has a unique Radon invariant measure if and only if $ \phi $ has a unique zero at 0.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 60J30

Retrieve articles in all journals with MSC: 60J30


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1200181-3
Keywords: Lévy processes, invariant measures
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society