Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Classifying PL $ 5$-manifolds up to regular genus seven


Authors: Maria Rita Casali and Carlo Gagliardi
Journal: Proc. Amer. Math. Soc. 120 (1994), 275-283
MSC: Primary 57Q99
MathSciNet review: 1205484
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In the present paper, we show that the only closed orientable $ 5$-manifolds of regular genus less or equal than seven are the $ 5$-sphere $ {\mathbb{S}^5}$ and the connected sums of $ m$ copies of $ {\mathbb{S}^1} \times {\mathbb{S}^4}$, with $ m \leqslant 7$. As a consequence, the genus of $ {\mathbb{S}^3} \times {\mathbb{S}^2}$ is proved to be eight. This suggests a possible approach to the ($ 3$-dimensional) Poincaré Conjecture, via the well-known classification of simply connected $ 5$-manifolds, obtained by Smale and Barden.


References [Enhancements On Off] (What's this?)

  • [B] D. Barden, Simply connected five-manifolds, Ann. of Math. (2) 82 (1965), 365-385. MR 0184241 (32:1714)
  • [BM] J. Bracho and L. Montejano, The combinatorics of colored triangulations of manifolds, Geom. Dedicata 22 (1987), 303-328. MR 887580 (88k:57028)
  • [C] M. R. Casali, A combinatorial characterization of $ 4$-dimensional handlebodies, Forum Math. 4 (1992), 123-134. MR 1155310 (93e:57033)
  • [CH] A. Cavicchioli and F. Hegenbarth, On the determination of $ PL$-manifolds by handles of lower dimension, Topology Appl. (to appear). MR 1247671 (95e:57044)
  • [CP] R. Chiavacci and G. Pareschi, Some bounds for the regular genus of closed $ PL$ manifolds, Discrete Math. 82 (1990), 165-180. MR 1057485 (91i:57008)
  • [FG] M. Ferri and C. Gagliardi, The only genus zero $ n$-manifold in $ {\mathbb{S}^n}$, Proc. Amer. Math. Soc. 85 (1982), 638-642. MR 660620 (84e:57017)
  • [FGG] M. Ferri, C. Gagliardi, and L. Grasselli, A graph-theoretical representation of $ PL$ manifolds--A survey on crystallizations, Aequationes Math. 31 (1986), 121-141. MR 867510 (88a:05057)
  • [G1] C. Gagliardi, How to deduce the fundamental group of a closed $ n$-manifold from a contracted triangulation, J. Combin. Inform. System Sci. 4 (1979), 237-252. MR 586313 (81m:57014)
  • [G2] -, Extending the concept of genus to dimension $ n$, Proc. Amer. Math. Soc. 81 (1981), 473-481. MR 597666 (82a:57004)
  • [G3] -, Surface maps and $ n$-dimensional manifolds, Atti IV Convegno di Topologia, Sorrento (Na)-September 1988, Rend. Circ. Mat. Palermo 24 (1990), 97-126.
  • [GG] C. Gagliardi and L. Grasselli, Representing products of polyhedra by products of edge-coloured graphs, J. Graph Theory (to appear). MR 1242174 (94i:57003)
  • [G1] L. C. Glaser, Geometrical combinatorial topology, Van Nostrand Reinhold Math. Stud., Van Nostrand Reinhold, New York, 1970.
  • [HW] P. J. Hilton and S. Wylie, An introduction to algebraic topology--Homology theory, Cambridge Univ. Press, Cambridge, 1960. MR 0115161 (22:5963)
  • [LM] S. Lins and A. Mandel, Graph-encoded $ 3$-manifolds, Discrete Math. 57 (1985), 261-284. MR 816815 (87f:57015)
  • [P1] M. Pezzana, Sulla struttura topologica delle varietá compatte, Atti Sem. Mat. Fis. Univ. Modena 23 (1975), 269-277. MR 0402792 (53:6606)
  • [P2] -, Diagrammi di Heegaard e triangolazione contratta, Boll. Un. Mat. Ital. 12 (1975), 98-105. MR 0425969 (54:13918)
  • [RS] C. Rourke and B. Sanderson, Introduction to piecewise-linear topology, Springer Verlag, New York and Heidelberg, 1972. MR 0350744 (50:3236)
  • [S] S. Smale, On the structure of $ 5$-manifoids, Ann. of Math. (2) 82 (1962), 38-46. MR 0141133 (25:4544)
  • [V] A. Vince, $ n$-graphs, Discrete Math. 72 (1988), 367-380. MR 975558 (89k:57002)
  • [W] A. T. White, Graphs, groups and surfaces, North-Holland, Amsterdam, 1973.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57Q99

Retrieve articles in all journals with MSC: 57Q99


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1994-1205484-4
Keywords: $ 5$-Manifolds, regular genus, classification, products of spheres and manifolds, handlebodies, Poincaré Conjecture, edge-coloured graphs, $ 2$-cell embeddings
Article copyright: © Copyright 1994 American Mathematical Society