Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the number of real curves associated to a complex algebraic curve


Authors: Emilio Bujalance, Grzegorz Gromadski and David Singerman
Journal: Proc. Amer. Math. Soc. 120 (1994), 507-513
MSC: Primary 20H10; Secondary 20H15, 30F50
DOI: https://doi.org/10.1090/S0002-9939-1994-1165047-6
MathSciNet review: 1165047
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Using non-Euclidean crystallographic groups we give a short proof of a theorem of Natanzon that a complex algebraic curve of genus $ g \geqslant 2$ has at most $ 2(\sqrt g + 1)$ real forms. We also describe the topological type of the real curves in the case when this bound is attained. This leads us to solve the following question: how many bordered Riemann surfaces can have a given compact Riemann surface of genus $ g$ as complex double?


References [Enhancements On Off] (What's this?)

  • [1] N. L Alling and N. Greenleaf, Foundations of the theory of Klein surfaces, Lecture Notes in Math., vol. 219, Springer-Verlag, New York, 1971. MR 0333163 (48:11488)
  • [2] E. Bujalance, J. J. Etayo, J. M. Gamboa, and G. Gromadzki, Automorphism groups of compact bordered Klein surfaces, Lecture Notes in Math., vol. 1439, Springer-Verlag, New York, 1990. MR 1075411 (92a:14018)
  • [3] A. H. M. Hoare and D. Singerman, The orientability of subgroups of plane groups, Groups (St. Andrews, 1981), London Math. Soc. Lecture Notes Ser., vol. 71, Cambridge Univ. Press, Cambridge and New York, 1982, pp. 221-227. MR 679163 (85g:20061)
  • [4] A. M. Macbeath, The classification of non-Euclidean plane crystallographic groups, Canad. J. Math. 19 (1967), 1192-1205. MR 0220838 (36:3890)
  • [5] S. M. Natanzon, On the order of a finite group of homeomorphisms of a surface onto itself and the number of real forms of a complex algebraic curve, Soviet Math. Dokl. 19 (1978), 1195-1199. MR 509374 (82b:14019)
  • [6] D. Singerman, Finitely maximal Fuchsian groups, J. London Math. Soc. (2) 6 (1972), 29-38. MR 0322165 (48:529)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20H10, 20H15, 30F50

Retrieve articles in all journals with MSC: 20H10, 20H15, 30F50


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1165047-6
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society