The AMS website will be down for maintenance on May 23 between 6:00am - 8:00am EDT. For questions please contact AMS Customer Service at or (800) 321-4267 (U.S. & Canada), (401) 455-4000 (Worldwide).


Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Approximation of fixed points of strongly pseudocontractive mappings

Author: C. E. Chidume
Journal: Proc. Amer. Math. Soc. 120 (1994), 545-551
MSC: Primary 47H10; Secondary 47H09, 47H15
MathSciNet review: 1165050
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ E$ be a real Banach space with a uniformly convex dual, and let $ K$ be a nonempty closed convex and bounded subset of $ E$. Let $ T:K \to K$ be a continuous strongly pseudocontractive mapping of $ K$ into itself. Let $ \{ {c_n}\} _{n = 1}^\infty $ be a real sequence satisfying: (i) $ 0 < {c_n} < 1$ for all $ n \geqslant 1$; (ii) $ \sum\nolimits_{n = 1}^\infty {{c_n} = \infty } $; and (iii) $ \sum\nolimits_{n = 1}^\infty {{c_n}b({c_n}) < \infty } $, where $ b:[0,\infty ) \to [0,\infty )$ is some continuous nondecreasing function satisfying $ b(0) = 0,\,b(ct) \leqslant cb(t)$ for all $ c \geqslant 1$. Then the sequence $ \{ {x_n}\} _{n = 1}^\infty $ generated by $ {x_1} \in K$,

$\displaystyle {x_{n + 1}} = (1 - {c_n}){x_n} + {c_n}T{x_n},\qquad n \geqslant 1,$

converges strongly to the unique fixed point of $ T$. A related result deals with the Ishikawa iteration scheme when $ T$ is Lipschitzian and strongly pseudocontractive.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47H10, 47H09, 47H15

Retrieve articles in all journals with MSC: 47H10, 47H09, 47H15

Additional Information

Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society