Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Construction of functors connecting homology and homotopy theories


Authors: S. Dragotti, R. Esposito and G. Magro
Journal: Proc. Amer. Math. Soc. 120 (1994), 635-646
MSC: Primary 57Q20; Secondary 55N35, 55P65, 57P99
MathSciNet review: 1165052
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For each manifold class $ \mathcal{F}$ it is given a functor $ {\Theta ^\mathcal{F}}$ satisfying the Eilenberg and Steenrod axioms except the excision axiom. It provides a nice unification of geometric treatments of homology and homotopy theories.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57Q20, 55N35, 55P65, 57P99

Retrieve articles in all journals with MSC: 57Q20, 55N35, 55P65, 57P99


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1994-1165052-X
PII: S 0002-9939(1994)1165052-X
Keywords: Manifold class, cobordism, homotopy functor
Article copyright: © Copyright 1994 American Mathematical Society