Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A note on a type of approximate identity in the Fourier algebra


Authors: Brian Forrest and Mahatheva Skantharajah
Journal: Proc. Amer. Math. Soc. 120 (1994), 651-652
MSC: Primary 43A15; Secondary 43A07, 46J99
DOI: https://doi.org/10.1090/S0002-9939-1994-1166356-7
MathSciNet review: 1166356
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ A(G)$ denote the Fourier algebra of the locally compact group $ G$. We show that for a large class of groups an ideal $ I$ in $ A(G)$ has a $ \Delta $-weak bounded approximate identity if and only if it has a bounded approximate identity.


References [Enhancements On Off] (What's this?)

  • [1] P. Eymard, L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181-236. MR 0228628 (37:4208)
  • [2] B. Forrest, Amenability and ideals in $ A(G)$), J. Austral. Math. Soc. Ser. A 53 (1992), 143-155. MR 1175708 (93i:43002)
  • [3] O. Hatori and S. Takahasi, Commutative Banach algebras which satisfy a Bochner-Schoenberg-Eberlein type theorem, Proc. Amer. Math. Soc. 110 (1990), 149-158. MR 1017008 (90m:46086)
  • [4] B. Host, Le thèoréme des idempotents dans $ B(G)$, Bull. Soc. Math. France 114 (1986), 215-233. MR 860817 (88b:43003)
  • [5] C. Jones and C. Lahr, Weak and norm approximate identities are different, Pacific J. Math. 72 (1977), 99-104. MR 0447972 (56:6282)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 43A15, 43A07, 46J99

Retrieve articles in all journals with MSC: 43A15, 43A07, 46J99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1166356-7
Keywords: Fourier algebra, bounded approximate identity, ideals
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society