Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A discrete fractal in $ {\bf Z}\sp 1\sb +$


Author: Davar Khoshnevisan
Journal: Proc. Amer. Math. Soc. 120 (1994), 577-584
MSC: Primary 60J15; Secondary 28A80
DOI: https://doi.org/10.1090/S0002-9939-1994-1185269-8
MathSciNet review: 1185269
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we show that the level sets of mean zero finite variance random walks in $ {\mathbb{R}^1}$ form a discrete fractal in the sense of Barlow and Taylor. Analogously to the Brownian motion result, the Hausdorff dimension of the level sets is almost surely equal to $ \tfrac{1} {2}$.


References [Enhancements On Off] (What's this?)

  • [BGT] N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular variation (J. C. Rota, ed.), vol. 27, Cambridge Univ. Press, 1987. MR 898871 (88i:26004)
  • [BT1] M. T. Barlow and S. J. Taylor, Fractal dimension of sets in discrete spaces, J. Phys. A 22 (1989), 2621-2626. MR 1003752 (90h:28011)
  • [BT2] -, Defining fractal subsets of $ {\mathbb{Z}^d}$, Proc. London Math. Soc. (3) 64 (1992), 125-152. MR 1132857 (92m:28013)
  • [DM] C. Dellacherie and P. A. Meyer, Probabilities and potential $ B$, North-Holland Math. Stud., vol. 72, North Holland, Amsterdam, 1982. MR 745449 (85e:60001)
  • [FP] B. Fristedt and W. Pruitt, Lower functions for increasing random walks and subordinators, Z. Wahrsch. Verw. Gebiete 18 (1971), 167-182. MR 0292163 (45:1250)
  • [K] H. Kesten, An iterated logarithm law for local time, Duke Math. J. 32 (1965), 447-456. MR 0178494 (31:2751)
  • [MR] M. B. Marcus and J. Rosen, Laws of the iterated logarithm for the local times of symmetric Lévy processes and recurrent random walks, preprint. MR 1288125 (95k:60190)
  • [N] J. Naudts, Dimension of discrete fractal spaces, J. Phys. A 21 (1988), 447-452. MR 940591 (89g:28012)
  • [S] C. J. Stone, A local limit theorem for nonlattice multi-dimensional distribution functions, Ann. Math. Statist. 36 (1965), 546-551. MR 0175166 (30:5351)
  • [TW] S. J. Taylor and J. G. Wendel, The exact Hausdorff measure of the zero set of a stable process, Z. Wahrsch. Verw. Gebiete 6 (1966), 170-180. MR 0210196 (35:1090)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 60J15, 28A80

Retrieve articles in all journals with MSC: 60J15, 28A80


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1185269-8
Keywords: Discrete fractals, random walks
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society