Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


Finite index subfactors and Hopf algebra crossed products

Author: Wojciech Szymański
Journal: Proc. Amer. Math. Soc. 120 (1994), 519-528
MSC: Primary 46L37; Secondary 16W30
MathSciNet review: 1186139
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that if $ {\mathbf{N}} \subseteq {\mathbf{M}} \subseteq {\mathbf{L}} \subseteq {\mathbf{K}}$ is a Jones's tower of type $ {\text{I}}{{\text{I}}_1}$ factors satisfying $ [{\mathbf{M}}:{\mathbf{N}}] < \infty ,\;{\mathbf{N}}' \cap {\mathbf{M}} = \mathbb{C}I,\;{\mathbf{N}}' \cap {\mathbf{K}}$ a factor, then $ {\mathbf{M}}' \cap {\mathbf{K}}$ bears a natural Hopf $ {\ast}$-algebra structure and there is an action of $ {\mathbf{M}}' \cap {\mathbf{K}}$ on $ {\mathbf{L}}$ such that the resulting crossed product is isomorphic to $ {\mathbf{K}}$.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46L37, 16W30

Retrieve articles in all journals with MSC: 46L37, 16W30

Additional Information

PII: S 0002-9939(1994)1186139-1
Keywords: Derived tower, Hopf algebra action and crossed product, Jones's index, subfactor of a type $ {\text{I}}{{\text{I}}_1}$ factor
Article copyright: © Copyright 1994 American Mathematical Society