FINITE INDEX SUBFACTORS
AND HOPF ALGEBRA CROSSED PRODUCTS

WOJCIECH SZYMAŃSKI

(Communicated by Palle E. T. Jorgensen)

Abstract. We show that if \(N \subseteq M \subseteq L \subseteq K \) is a Jones's tower of type \(\text{II}_1 \) factors satisfying \([M: N] < \infty \), \(N' \cap M = \mathbb{C} I \), \(N' \cap K \) a factor, then \(M' \cap K \) bears a natural Hopf *-algebra structure and there is an action of \(M' \cap K \) on \(L \) such that the resulting crossed product is isomorphic to \(K \).

1. Introduction

Since Jones's fundamental work \([4]\), understanding the structure of subfactors of type \(\text{II}_1 \) factors has become one of the most important subjects in von Neumann algebra theory. Finite index subfactors with trivial relative commutants are of particular interest.

Several authors have tried to explain the relationship between subfactors and the crossed product construction related to group or, more generally, Hopf algebra actions. Treating the hyperfinite factor case Ocneanu has provided in \([5]\) a very interesting and general scheme for studying this problem.

In this paper we give a simple proof of the following theorem, which was also announced by Ocneanu. If \(N \subseteq M \subseteq L \subseteq K \) is a Jones's tower of type \(\text{II}_1 \) factors with finite index, \(N' \cap M = \mathbb{C} \) and \(N' \cap K \) a factor, then \(M' \cap K \) has a natural Hopf *-algebra structure and acts on \(L \) in such a way that the resulting crossed product is isomorphic to \(K \). This can serve as an intrinsic characterization of crossed products of type \(\text{II}_1 \) factors by outer actions of finite-dimensional Hopf *-algebras (the downward construction plays a role).

A similar theorem for infinite index inclusion is conjectured in \([3]\).

The preliminary section of our article contains some elementary and probably well-known facts. Next we give a detailed construction of a Hopf algebra structure on \(M' \cap K \). The comultiplication is defined as a map dual to the multiplication in \(N' \cap L \), duality between the two relative commutants being established by a very natural bilinear form.

In our approach we managed to avoid all cohomological complications.

As a byproduct we obtained a sharper version of the Pimsner-Popa trace inequality \([6, \text{Proposition 1.9}]\).
In the last section we give a simple formula for the action and prove the isomorphism theorem.

2. Preliminaries

Let \(I \in \mathbb{N} \subseteq \mathbb{M} \) be type \(\text{II}_1 \) factors with finite index \([\mathbb{M} : \mathbb{N}] = \lambda\) and trivial relative commutant \(\mathbb{N}' \cap \mathbb{M} = \mathbb{C}I\). Let \(\mathbb{L} \) be the Jones extension of \(\mathbb{M} \) by \(\mathbb{N} \), that is, \(\mathbb{L} = \langle \mathbb{M}, e_N \rangle \), where \(e_N \) is the Jones projection. Similarly, let \(\mathbb{K} \) be the Jones extension of \(\mathbb{L} \) by \(\mathbb{M} \) with the corresponding projection \(e_M \). By Proposition 3.1.7 of [4] we have \([\mathbb{K} : \mathbb{L}] = [\mathbb{L} : \mathbb{M}] = \lambda\), and it is clear that \(\mathbb{M}' \cap \mathbb{L} = \mathbb{L}' \cap \mathbb{K} = \mathbb{C}I\).

We denote by \(\tau \) the canonical trace on \(\mathbb{K} \) and by \(E_L \) and \(E_M \) the conditional expectations related to \(\tau \) from \(\mathbb{K} \) onto \(\mathbb{L} \) and \(\mathbb{M} \) respectively. Clearly \(E_M = E_M \circ E_L \).

We denote \(\mathbb{N}' \cap \mathbb{L} \) by \(\mathbb{A} \), \(\mathbb{M}' \cap \mathbb{K} \) by \(\mathbb{B} \), and \(\mathbb{N}' \cap \mathbb{K} \) by \(\mathbb{C} \). All of them are finite dimensional \(\text{C}^*\)-algebras (cf. [4, Corollary 2.2.3]). Proposition 1.9 of [6] implies that \(e_N \) and \(e_M \) are minimal and central projections in \(\mathbb{A} \) and \(\mathbb{B} \) respectively.

We denote by \(\mathbb{D} \) the two-sided ideal of \(\mathbb{C} \) generated by \(e_M \) (which coincides with the ideal generated by \(e_N \)). We denote by \(E_A \) and \(E_B \) the conditional expectations related to \(\tau \) from \(\mathbb{C} \) onto \(\mathbb{A} \) and \(\mathbb{B} \) respectively. For any \(c \in \mathbb{C} \) we denote by \(\overline{c} \) its image under the projection of \(\mathbb{C} \) onto \(\mathbb{D} \).

The following proposition is easily established by considering the tower of commutants \(\mathbb{K}' \subseteq \mathbb{L}' \subseteq \mathbb{M}' \subseteq \mathbb{N}' \), with \(\mathbb{L} \) represented on \(L^2(L, \tau) \).

Proposition 1. There is a tower of type \(\text{II}_1 \) factors \(I \in \mathbb{P} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{S} \) such that:

1. \([\mathbb{Q} : \mathbb{P}] = \lambda\);
2. \(\mathbb{P}' \cap \mathbb{Q} = \mathbb{C}I\);
3. \(\mathbb{R} \) is the Jones extension of \(\mathbb{Q} \) by \(\mathbb{P} \) (with the corresponding projection \(e_P \));
4. \(\mathbb{S} \) is the Jones extension of \(\mathbb{R} \) by \(\mathbb{Q} \) (with the corresponding projection \(e_Q \)); and
5. there is an isomorphism \(\theta : \mathbb{P}' \cap \mathbb{S} \to \mathbb{C} \) such that \(\theta(\mathbb{P}' \cap \mathbb{R}) = \mathbb{B} \), \(\theta(Q' \cap S) = A \), \(\theta(e_P) = e_M \), \(\theta(e_Q) = e_N \).

An easy proof of the following proposition is also omitted.

Proposition 2. For any \(a \in \mathbb{A} \), \(b \in \mathbb{B} \), \(c \in \mathbb{C} \), \(x \in \mathbb{M} \), \(y \in \mathbb{L} \):

1. \(E_M(c) = \tau(c)I \);
2. \(E_A(b) = \tau(b)I \), \(E_B(a) = \tau(a)I \);
3. \(\tau(ab) = \tau(a)\tau(b) \);
4. if \(xa = 0 \) then either \(x = 0 \) or \(a = 0 \), and if \(yb = 0 \) then either \(y = 0 \) or \(b = 0 \);
5. \(E_L(C) = A \) and, therefore, \(E_L|_C = E_A \);
6. both \(\mathbb{A} \to \mathbb{A} \) and \(\mathbb{B} \to \mathbb{B} \) are isomorphisms.

Proposition 3. A map \(\mathbb{A} \otimes \mathbb{A} \to \mathbb{D} \) defined by \(a_1 \otimes a_2 \mapsto a_1e_Ma_2 \) is a linear isomorphism. Similarly, a map \(\mathbb{B} \otimes \mathbb{B} \to \mathbb{D} \) defined by \(b_1 \otimes b_2 \mapsto b_1e_Nb_2 \) is a linear isomorphism. This implies that \(\mathbb{D} = Ae_M \mathbb{A} = Be_N \mathbb{B} \) and \(\dim \mathbb{A} = \dim \mathbb{B} = d \).
Proof. The map $A \otimes A \to D$ has a trivial kernel. Indeed, if $\{a_i\}$ form a \(\tau\)-orthonormal basis of A then $\{a_i e_M a_i^*\}$ are pairwise \(\tau\)-orthogonal, nonzero vectors and, hence, linearly independent.

The map is onto. To this end it suffices to show that $A e_M A$ is an ideal of C. Let $a_1, a_2 \in A$ and $c \in C$. By Lemma 1.2 of [6] we have $c a_1 e_M a_2 = \lambda^{-1} E_L (c a_1 e_M) e_M a_2$ and $E_L (c a_1 e_M) \in A$ by Proposition 2(5).

With the help of Proposition 1 one can prove in the same way as above that the map $B \otimes B \to D$ is an isomorphism. \(\square\)

Corollary 4. For any $a \in A$, $b \in B$, $c \in C$:

(1) e_M and e_N are minimal projections in C;

(2) $e_M a e_M = \tau(a) e_M$,

$e_N b e_N = \tau(b) e_N$;

(3) $c e_M = A e_M$—more precisely, $ce_M = \lambda E_A (ce_M) e_M$, and $c e_N = B e_N$—more precisely, $ce_N = \lambda E_B (ce_N) e_N$; and

(4) $D = AB$ and $D \cong M_d(C)$, where $d = \dim A = \dim B$.

Part (1) of the following proposition is established by examining the representation of L on $L^2(L, \tau)$. Part (2) is proven similarly with help of Proposition 1.

Proposition 5. Let D act on \mathcal{H} as a full algebra of endomorphisms. Since e_M and e_N are minimal in D (Corollary 4(1)), they project onto one-dimensional spaces, say, spanned by ζ and ξ respectively. Then:

(1) ζ is cyclic and separating for A. If J_A denotes the corresponding modular involution then

(a) $J_A B J_A = B$;

(b) if $x, y \in A$ then $J_A (x e_M y) J_A = x^* e_M y^*$; and

(c) if $x_i, y_i \in A$ and $\sum x_i e_M y_i \in B$ then $\sum y_i e_N x_i \in B$.

(2) ξ is cyclic and separating for B. If J_B denotes the corresponding modular involution then

(a) $J_B \overline{J_B} = \overline{A}$;

(b) if $x, y \in B$ then $J_B (x e_N y) J_B = x^* e_N y^*$; and

(c) if $x_i, y_i \in B$ and $\sum x_i e_N y_i \in \overline{A}$ then $\sum y_i e_N x_i \in \overline{A}$.

3. Duality between $N' \cap L$ and $M' \cap K$

From now on we fix a system of matrix units in $A \cong \bigoplus_\alpha A_\alpha$, with each A_α a factor, as follows:

$$\{s_{ij}^\alpha \mid s_{ii}^\alpha = p_i^\alpha \text{ is a minimal projection in } A_\alpha \text{ and } s_{ij}^\alpha \text{ is a partial isometry with domain } p_{ij}^\alpha \text{ and range } p_{ij}^\alpha\}.$$

We denote by $/\alpha/ \text{ the natural number such that } A_\alpha \cong M_{/\alpha/}(\mathbb{C})$.

Definition 6. For any α, i, j we define f_{ij}^α as

$$f_{ij}^\alpha = \tau(p_{ij}^\alpha)^{-1} s_{ij}^\alpha e_M s_{ij}^\alpha.$$

Proposition 7. \{${f_{ij}^\alpha}$\} are pairwise orthogonal minimal projections in D such that $\sum_i f_{ij}^\alpha = \overline{p}_{ij}^\alpha$. Moreover, $e_M f_{ij}^\alpha = \delta_{ij} e_M p_i^\alpha$, $f_{ij}^\alpha e_M = \delta_{ij} p_j^\alpha e_M$, and $s_{ik}^\alpha f_{jk}^\alpha s_{kj}^\alpha = s_{ij}^\alpha f_{ij}^\alpha$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proof. Each f_{ij}^α is self-adjoint and
\[f_{ij}^\alpha f_{lm}^\beta = \tau(p_{ij}^\alpha)^{-1} \tau(p_{lm}^\beta)^{-1} \tau(s_{ij}^\alpha s_{lm}^\beta) s_{ji}^\alpha e_M s_{mn}^\alpha = \delta_{\alpha \beta} \delta_{im} \delta_{jn} f_{ij}^\alpha. \]
Hence, they are pairwise orthogonal subprojections of p_j^α. Since $\tau(f_{ij}^\alpha) = \tau(e_M)$, they are minimal in D.

By virtue of Proposition 3 there are scalars t_{mn} such that
\[\bar{p}_j^\alpha - \sum_i f_{ij}^\alpha = \sum_{m,n} t_{mn} s_{jm}^\alpha e_M s_{nj}^\alpha. \]
Multiplying it from the left by $s_{jk}^\alpha e_M s_{nj}^\alpha$ (for an arbitrary k) we get
\[0 = \sum_n t_{kn} s_{jkm}^\alpha e_M s_{nj}^\alpha. \]
Since $s_{jk}^\alpha e_M s_{nj}^\alpha$ are linearly independent, $t_{kn} = 0$ for all n and $\sum_i f_{ij}^\alpha = \bar{p}_j^\alpha$.

The remaining claims are easily verified. \(\square\)

Corollary 8. For any α, i we have $\tau(\bar{p}_i^\alpha) = /\alpha /\lambda^{-1}$.

Since $\tau(p_i^\alpha) \geq \tau(\bar{p}_i^\alpha)$, the preceding corollary is a sharper version of Proposition 1.9 of [6]. It also says that $h(x) := \lambda d^{-1} \tau(x)$ would be the Haar trace on A (see Appendix 2 of [8]) if we could define a Hopf algebra structure on A.

Definition 9. We define a bilinear form $(\cdot, \cdot) : A \times B \to C$ by
\[(a, b) = \lambda^2 \tau(a e_M e_N b). \]

Proposition 10. The form defined above establishes duality between A and B.
Proof. Let $b \in B$ and, for any $a \in A$, $(a, b) = 0$. Hence, $0 = \tau(A e_M e_N b) = \tau(A e_M e_N b) = \tau(e_N b D)$. In particular, $0 = \tau(e_N b b^* e_N)$ and faithfulness of τ implies $0 = e_N b$ and, hence, $b = 0$.

Similarly, $a = 0$ if $(a, b) = 0$ for all $b \in B$. \(\square\)

Definition 11. We denote by $\{v_{ij}^\alpha\}$ the basis of B dual to $\{s_{ij}^\alpha\}$ viz. (\cdot, \cdot). That is,
\[(s_{kl}^\beta, v_{ij}^\alpha) = \delta_{\alpha \beta} \delta_{ik} \delta_{jl}. \]

From now on we assume that one of the following easily equivalent conditions is satisfied.

1. C is a factor (i.e., $C = D$).
2. $d = \lambda$ ($d = \dim A = \dim B$, $\lambda = [M : N]$).
3. $\tau(p_i^\alpha) = /\alpha /\lambda^{-1}$ for any α, i.

Proposition 12. (1) $v_{ij}^\alpha e_M = \delta_{ij} e_M$.

2. (a) $(v_{ij}^\alpha)^* e_N v_{ij}^\beta = /\alpha^{-1} f_{ij}^\alpha$;
 (b) $e_N v_{ij}^\alpha = e_N v_{ij}^\alpha s_{ij}^\alpha$, hence $/\alpha^{1/2} e_N v_{ij}^\alpha$ is a partial isometry with domain f_{ij}^α and range e_N.

3. (a) $e_M e_N v_{ij}^\alpha = /\alpha^{-1} e_M s_{ij}^\alpha$;
 (b) $e_M e_N (v_{ij}^\alpha)^* = /\alpha^{-1} e_M J s_{ij}^\alpha J_B$.
(4) \(\tau((v_{ij}^\alpha)^*v_{mn}^\beta) = \delta_{\alpha\beta}\delta_{im}\delta_{jn}/\alpha^{-1}. \)

(5) (a) \(\sum_k (v_{ik}^\alpha)^*e_Nv_{jk}^\beta = /\alpha^{-1}s_{ij}^\alpha; \)
(b) \(\sum_k v_{ik}^\alpha e_N(v_{jk}^\beta)^* = /\alpha^{-1}J_{B_i}^*J_B. \)

(6) (a) \(E_A((v_{ik}^\alpha)^*e_Nv_{jk}^\beta) = \delta_{\alpha\beta}\delta_{kl}/\alpha^{-2}s_{ij}^\alpha; \)
(b) \(E_A(v_{ik}^\alpha e_N(v_{jl}^\beta)^*) = \delta_{\alpha\beta}\delta_{kl}/\alpha^{-2}J_{B_i}^*J_B. \)

Proof. (1) and (2): Since \(e_N \) and \(f_{ii}^\alpha \) are both minimal projections in \(D \), there is a \(c \in D \) such that \(c^*e_Nc = f_{ii}^\alpha \). By Corollary 4(3) there is a \(b \in B \) such that \(e_Nb = e_Nc \); hence, \(b^*e_Nb = c^*e_Nc = f_{ii}^\alpha \). Since \(e_M \) is minimal and central in \(B \), there is a scalar \(t \) such that \(be_M = te_M \). We have \(|t|^2\lambda^{-1}e_M = |t|^2e_Me_Ne_M = e_M(b^*e_Nb)e_M = e_M\alpha^{\alpha}e_M = e_M\lambda(p_{ii}^\alpha)e_M \). Therefore, \(|t|^2 = \lambda(p_{ii}^\alpha) = /\alpha/ \) and we can find a \(\theta \in R \) such that \(w = \theta^i/\alpha^{-1/2}b \) satisfies \(w^*e_Nw = /\alpha^{-1/2}f_{ii}^\alpha \) and \(w^*e_Mw = e_M \). Now we have

\[
(s_{mn}^\alpha, w) = \lambda^2\tau(s_{mn}^\alpha e_M w^*e_Nw) = \tau(p_{ii}^\alpha)^{-1} \lambda^2\tau(s_{mn}^\alpha e_M f_{ii}^\alpha) = \delta_{\alpha\beta}\delta_{im}\delta_{jn}.
\]

Therefore, \(w = v_{ii}^\alpha \) and we have proven (1) (in case \(i = j \)) and (2)(a).

Again by Corollary 4(3) there is a \(u \in B \) such that \(e_Nu = e_Nv_{jj}^\alpha f_{ii}^\alpha \). We have

\[
(s_{mn}^\alpha, u) = \lambda^2\tau(s_{mn}^\alpha e_M(v_{jj}^\alpha)^*e_NV_{jj}^\alpha f_{ii}^\alpha) = \lambda^2\tau(p_{jj}^\alpha)^{-1} \lambda^2\tau(s_{mn}^\alpha e_M f_{jj}^\alpha f_{ii}^\alpha) = \delta_{\alpha\beta}\delta_{im}\delta_{jn};
\]

hence, \(u = v_{jj}^\alpha \) and (2)(b) is proven.

For \(i \neq j \) then

\[
0 = (I, v_{ij}^\alpha) = \lambda^2\tau(e_M e_N v_{ij}^\alpha) = \{\text{Proposition 2(3)}\} = \lambda^2\tau(v_{jj}^\alpha e_M e_N).
\]

This proves (1) in case \(i \neq j \).

(3) is established by a direct computation (with help of Proposition 5(2)).

\[
\tau((v_{ij}^\alpha)^*v_{mn}^\beta) = \lambda\tau((v_{ij}^\alpha)^*e_NV_{mn}^\beta) = \lambda\tau(s_{ij}^\alpha(v_{jj}^\alpha)^*e_NV_{mn}^\beta f_{ii}^\alpha) = \delta_{\alpha\beta}\delta_{im}\delta_{jn}/\alpha^{-1}.
\]

(5)(a)

\[
\sum_k (v_{ik}^\alpha)^*e_Nv_{jk}^\alpha = \sum_k s_{ik}^\alpha(v_{kk}^\alpha)^*e_NV_{kk}^\beta s_{kj}^\alpha = /\alpha^{-1}\sum_k s_{ik}^\alpha f_{kk}^\alpha s_{kj}^\alpha = /\alpha^{-1}s_{ij}^\alpha f_{kk}^\alpha s_{kj}^\alpha.
\]

(b) follows from (a) with the help of Proposition 5(2)(b).

(6)(a) If \(k \neq l \) then \(E_A((v_{kk}^\alpha)^*e_N^\alpha_{ii}^\alpha) = 0 \). Indeed, for any \(\beta, m, n \)

\[
\tau(s_{mn}^\alpha(v_{kk}^\alpha)^*e_N^\alpha_{ii}^\alpha) = \tau(s_{mn}^\alpha f_{kk}^\alpha(v_{kk}^\alpha)^*e_N^\alpha_{ii}^\alpha)
\]

\[
= \delta_{\alpha\beta}\delta_{kn}\delta_{im}\tau(f_{kk}^\alpha(v_{kk}^\alpha)^*e_N^\alpha_{ii}^\alpha) = 0.
\]
Since clearly $E_A(f_{kk}) = /\alpha /-1 p_{kk}$, we obtain
\begin{equation}
E_A((v_{ik})^* e_N v_{ij}) = s_{ik}^\alpha E_A((v_{kk})^* e_N v_{kk}) s_{kj}^\beta \\
= \delta_{\alpha \beta} \delta_{kJ} s_{ik}^\alpha E_A((v_{kk})^* e_N v_{kk}) s_{kj}^\beta \\
= \delta_{\alpha \beta} \delta_{kJ} /\alpha /-1 s_{ik}^\alpha E_A(v_{kk}) s_{kj}^\beta \\
= \delta_{\alpha \beta} \delta_{kJ} /\alpha /-2 s_{ij}^\alpha.
\end{equation}

(b) Since $J_B A J_B = A$ by virtue of Proposition 4(2)(a) we have $E_A(J_B x J_B) = J_B E_A(x) J_B$ and the claim follows from (a) and Proposition 5(2)(b). □

Corollary 13. The matrix $[v_{ij}]$, whose i, j entry equals v_{ij}^α, is a unitary element of $M_{/\alpha /}(B)$.

Remark. This fact corresponds to the duality between unitary modules of a Hopf *-algebra and unitary comodules of its dual (see [8]).

4. HOPF ALGEBRA STRUCTURES ON $N' \cap L$ AND $M' \cap K$

Definition 14. We define linear maps $\Delta: B \rightarrow B \otimes B$, $\varepsilon: B \rightarrow \mathbb{C}$, and $S: B \rightarrow B$ as follows.

(1) $\Delta(b) = \sum b_t \otimes b_R$, where $\sum b_t \otimes b_R$ is uniquely determined (by virtue of Proposition 10) by equality $(x y, b) = \sum (x, b_t)(y, b_R)$, to be satisfied by all $x, y \in A$.

(2) $\varepsilon(b)$ is defined by $b e_M = \varepsilon(b) e_M$.

(3) $S(b)$ is an element of B uniquely determined (by Proposition 10) by equality $(x, S(b)) = (x^*, b^*)$, to be satisfied by all $x \in A$.

Theorem 15. B equipped with its C*-algebra structure, comultiplication (Δ), counit (ε), and coinverse (S) introduced by Definition 14 is a Hopf *-algebra and a finite-dimensional compact matrix quantum group as defined in [8] by Woronowicz.

Proof. (1) Since e_N is a minimal and central projection in A, there is a selfadjoint, multiplicative functional $\eta: A \rightarrow \mathbb{C}$ such that $ae_N = \eta(a)e_N$ for any $a \in A$. For any $x, y \in A$, we have $(x y, I) = \lambda^2 \tau(x y e_M e_N) = \lambda^2 \eta(x y) \tau(e_M e_N) = \eta(x y)$ and $(x, l)(y, I) = \lambda^4 \tau(x e_M e_N) \tau(y e_M e_N) = \eta(x) \eta(y)$. Hence, $(x y, I) = (x, l)(y, I)$ and $\Delta(I) = I \otimes I$.

We keep the notation of Proposition 5. We have $\tau(e_N x e_N) = \lambda^{-1}(x \xi, \xi)$ for any $x \in D$; hence, $(a, b) = \lambda(\sigma_M \xi, b^* \xi)$ for any $a \in A$, $b \in B$. For any $x, y \in A$ we have
\begin{align*}
(x y, b^*) &= \lambda(x y e_M \xi, b^* \xi) \\
&= \lambda((J_B x J_B)(J_B y J_B)e_M \xi, b^* \xi) \\
&= \lambda^2 \sum \langle J_B x J_B e_M \xi, (b^*_R)^* \xi \rangle \\
&= \sum (x, (b^*_R)^*)(y, (b^*_R)^*).
\end{align*}
This proves that $\Delta(b^*) = \Delta(b)^*$. (2) Associativity of the multiplication in A implies $(\Delta \otimes \text{id})\Delta = (\text{id} \otimes \Delta)\Delta$.

(3) Since e_M is a minimal and central projection in B, ε is a selfadjoint, multiplicative functional.
(4) For any \(c \in B \) we have \((I, c) = \lambda^2 \tau(e_{M_{NC}}) = e(c)\). Therefore, for any \(a \in A \), \((a, b) = (a \cdot I, b) = \sum (a, b) = (a, \sum \tau(b))\); hence, \(b = \sum \tau(b)\). Similarly, \((e \otimes \mathrm{id})A = \mathrm{id}\).

(5) Let \(b \in B \) and \(b = \sum x_i e_M y_i \) with \(x_i, y_i \in A \). By Proposition 5(1), \(\sum y_i e_M x_i = J_A(\sum y_i e_M x_i^*) J_A\) belongs to \(B\). Since
\[
(a, \sum y_i e_M x_i^*) = \left(a^*, \sum y_i^* e_M x_i^*\right)
\]
for any \(a \in A\), \(S(b) = J_A b^* J_A\) for any \(b \in B\). This implies that \(S\) is a *-preserving, antimultiplicative involution.

(6) We claim that \(S(v_{ij}^o) = (v_{ij}^o)^*\). Indeed, by Proposition 4(1) we have
\[
(a, (v_{ij}^o)^*) = \lambda^2 \tau(a e_{M_{NC}}(v_{ij}^o)^*) = \lambda^{-1} \lambda^2 \tau(a e_{M} J_B s_{ij}^o J_B) = \lambda^{-1} \lambda^2 \tau(J_B s_{ij}^o J_B a).
\]
Similarly,
\[
(a^*, (v_{ij}^o)^*) = \lambda^2 \tau(v_{ij}^o e_{M_{NC}} a) = \lambda^{-1} \lambda^2 \tau(J_B s_{ij}^o J_B e_{M} a) = \lambda^{-1} \lambda^2 \tau(a J_B s_{ij}^o J_B),
\]
and the claim follows. Since it is an immediate consequence of our definitions that \(\Delta(v_{ij}^o) = \sum_k v_{ik}^o \otimes v_{kj}^o\), it now follows easily from Proposition 5(1) and Corollary 13 that \(m(S \otimes \mathrm{id})A = e = m(\mathrm{id} \otimes S)A\), where \(m: b_1 \otimes b_2 \mapsto b_1 b_2\).

(7) Now we are in a position to prove multiplicativity of \(\Delta\).

Let us define a map \(T: B \otimes B \to D\) by \(T: b_1 \otimes b_2 \mapsto b_1 e_{N} s_{ij}^o J_B^2\). By Proposition 3 and (5) this map is a linear isomorphism. We claim that \(T(\Delta(B)) = A\).

At first we notice that (4) implies that \(\Delta\) is an injective map. We have
\[
T(\Delta(v_{ij}^o)) = \sum v_{ik}^o e_{N} S(v_{kj}^o) = \sum v_{ik}^o e_{N} S(v_{jk}^o)^*
\]
belongs to \(A\) by Propositions 5(2) and 12(5). Since \(\{\Delta(v_{ij}^o)\}\) form a linear basis of \(\Delta(B)\), we see that \(T(\Delta(B)) \subseteq A\), and, since \(T\) is injective and \(\dim(\Delta(B)) = \dim A\), we conclude that \(T(\Delta(B)) = A\).

Now we define a new multiplication \(\otimes\) in \(D\) by \(x \otimes y = T(T^{-1}(x) T^{-1}(y))\). One can easily check that if \(b_1, b_2, c_1, c_2 \in B\) then \((b_1 e_{NC_1}) \otimes (b_2 e_{NC_2}) = b_1 b_2 e_{NC_2 c_1}\) (by (5) \(S\) is an antimultiplicative involution).

Since \(\Delta\) has a multiplicative inverse \(\varepsilon \otimes \mathrm{id}\), in order to prove multiplicativity of \(\Delta\) it suffices to show that \(\Delta(B)\) is closed in \(B \otimes B\) under multiplication or, equivalently, that \(A\) is closed in \(D\) under \(\otimes\). We have
\[
T(\Delta(v_{ij}^o)) \otimes T(\Delta(v_{mn}^o)) = \sum v_{ik}^o \left(\sum v_{mt}^o e_{N}(v_{nt}^o)^*\right) (v_{jk}^o)^*
\]
and \(\sum v_{mt}^o e_{N}(v_{nt}^o)^*\) is in \(A\). We have to show that \(\sum v_{ik}^o a(v_{jk}^o)^*\) is in \(A\) for any \(a \in A\). Since \(A = N' \cap L\) and \(\sum v_{ik}^o a(v_{jk}^o)^*\) being in \(D\) is in \(N'\), it remains to show that \(\sum v_{ik}^o a(v_{jk}^o)^*\) being in \(L\). But there are elements \(x_s, y_s\) in \(M\) such that \(a = \sum x_s e_{NY} y_s\). Therefore,
\[
\sum v_{ik}^o a(v_{jk}^o)^* = \sum v_{ik}^o \left(\sum x_s e_{NY} y_s\right) (v_{jk}^o)^* = \sum x_s \left(\sum v_{ik}^o e_{N}(v_{jk}^o)^*\right) y_s,
\]
and, since \(\sum v_{ik}^o e_{N}(v_{jk}^o)^*\) belongs to \(A \subseteq L\), we are done.
(8) One can check that a matrix with blocks \([v^a]\) along its diagonal satisfies the requirements of the definition of a compact matrix quantum group. □

Corollary 16. A with its natural C*-algebra structure, comultiplication, counit, and antipode defined as dual to multiplication, unit, and antipode respectively in B (viz. \((\cdot, \cdot)\)) bears a Hopf *-algebra structure dual to that of B.

5. **Action of** \(\mathbf{M}' \cap \mathbf{K}\) **on** \(\mathbf{L}\)

Definition 17. We define a bilinear map \(\mathbf{B} \times \mathbf{L} \rightarrow \mathbf{L}\) (denoted by \(b \rightarrow x\)) by setting \(b \rightarrow x = \lambda E_L(bx e_M)\).

Lemma 18. For any \(b \in \mathbf{B}\), \(x \in \mathbf{L}\) we have \(bx = \sum (b f) ^{x} b f^{x}\).

Proof. Since \(\{v^a_{ij}\}\) form a basis of \(\mathbf{B}\) and \(\Delta(v^a_{ij}) = \sum_k v^a_{ik} \otimes v^a_{kj}\), it suffices to show that \(v^a_{ij} x = \lambda \sum_k E_L(v^a_{ik} x e_M) v^a_{kj}\). At first we prove this for \(x = e^n\).

Since \(\dim \mathbf{B} = \lambda\) and \(E_L|B = \tau\), we infer that \(\mathbf{B}\) contains a quasi-basis for \(E_L\) (see [6, 7]). It follows that there are elements \(x_{ij}^\gamma \in \mathbf{L}\) such that

\[
v^a_{ij} e^n = \sum_{\gamma n s} x^\gamma_{ns} v^a_{ns}.
\]

Multiplying this equality by \((v^a_{km})^\star\) (for any fixed \(\beta, k, m\)) from the right and taking \(E_L\) of both sides we get

\[
E_L(v^a_{ij} e^n (v^a_{km})^\star) = \sum_{\gamma n s} x^\gamma_{ns} E_L(v^a_{ns} (v^a_{km})^\star) = \sum_{\gamma n s} x^\gamma_{ns} (v^a_{ns} (v^a_{km})^\star)^\star = \beta / \beta^{-1} x^\beta_{km}.
\]

Since \(E_L|D = E_A\), by virtue of Proposition 12(6)(b) we have

\[
v^a_{ij} e^n = \sum_{\beta k m} / \beta / E_A (v^a_{ij} e^n (v^a_{km})^\star) v^a_{km} = / \alpha / \sum_k (J_{B} s^a_{ik} J_{B}) v^a_{kj}.
\]

On the other hand, with the help of Propositions 5(2) and 12(3) we get

\[
E_A (v^a_{ij} e^n e_M) = / \alpha / E_A (J_{B} s^a_{ik} J_{B}) e_M) = \lambda / \alpha / J_{B} s^a_{ik} J_{B}.
\]

Thus the lemma is proven for \(x = e^n\). The general case follows from the fact that for any \(x \in \mathbf{L}\) there are \(y_n, t_n \in \mathbf{M}\) with \(x = \sum y_n e_M t_n\) (cf. [3, Theorem 3.6.4(iii)]). □

Proposition 19. The map introduced by Definition 17 is a left action of \(\mathbf{B}\) on \(\mathbf{L}\).

Proof. (1) \(I \rightarrow x = \lambda E_L(x e_M) = \lambda x E_M(e_M) = x\).

(2) \(b \rightarrow I = \lambda E_L(b e_M) = e(b) I\).

(3) By virtue of Lemma 1.2 of [6] we have

\[
b_1 b_2 \rightarrow x = \lambda E_L(b_1 b_2 x e_M) = \lambda E_L(b_1 \lambda E_L(b_2 x e_M) e_M) = b_1 \rightarrow (b_2 \rightarrow x).
\]
(4) Proposition 12(3) implies that $E_L(e_{\text{Me}} b) = E_L(S(b)e_{\text{Me}})$ for any $b \in M$. Since any $x \in L$ can be written as $x = \sum u_\iota e_{\text{Ne}} w_\iota$, $u_\iota, w_\iota \in M$, the above gives $E_L(e_{\text{Me}} x b) = E_L(S(b)x e_{\text{Me}})$. Thus, for any $b \in B$, $x \in L$, $(b - x)^* = \lambda E_L(e_{\text{Me}} x^* b^*) = \lambda E_L(S(b^*)x_{\text{Me}}^*) = S(b^*) - x$.

(5) By the preceding lemma $bx = \lambda \sum E_L(b^\iota e_{\text{Me}}) b^\iota$ for any $b \in B$, $x \in L$. Multiplying this equality from the right by $y e_{\text{Me}} t$ with $y, t \in L$ arbitrary and then taking trace of both sides we get $\tau(b x y e_{\text{Me}} t) = \lambda \tau(\sum E_L(b^\iota e_{\text{Me}}) b^\iota y e_{\text{Me}} t)$. This yields

$$E_L(bxy e_{\text{Me}}) = \lambda \sum E_L(b^\iota e_{\text{Me}}) E_L(b^\iota y e_{\text{Me}}).$$

This means that $b - (xy) = \sum (b^\iota - x)(b^\iota y - y)$.

At this point we have no difficulties in proving our final result.

Theorem 20. Let B act on L from the left as in Definition 17. A map ϕ such that $\phi: x \otimes b \mapsto xb$, $x \in L$, $b \in B$, is a \ast-isomorphism from the crossed product $L \rtimes B$ onto K.

Proof. If $\{b_\iota\}$ form a τ-orthonormal basis of B then $\{(b_\iota, b_\iota^*)\}$ form a quasi basis for E_L (cf. [7; 6, Proposition 1.3]). Thus the map is a linear isomorphism. We have $\phi(I \otimes I) = I$ and for any $x \in L$, $b \in B$

$$\phi((x \otimes b)^*) = \phi \left(\sum ((b^\iota)^* - x^*) \otimes (b^\iota)^* \right)$$

$$= \sum ((b^\iota)^* - x^*)(b^\iota)^*.$$

On the other hand, since Δ preserves \ast, applying Lemma 18 we get

$$\phi(x \otimes b)^* = b^* x^* = \sum ((b^\iota)^* - x^*)(b^\iota)^*,$$

thus ϕ preserves \ast. ϕ also preserves multiplication, since for any $x_1, x_2 \in L$, $b_1, b_2 \in B$ we have (again by Lemma 18)

$$\phi((x_1 \otimes b_1)(x_2 \otimes b_2)) = x_1 \left(\sum (b_1^\iota - x_2)b_1^\iota \right) b_2$$

$$= x_1 b_1 x_2 b_2 = \phi(x_1 \otimes b_1)\phi(x_2 \otimes b_2).$$

Acknowledgments

I would like to take this opportunity to thank Dr. C. Peligrad for his encouragement and many fruitful discussions. I am greatly indebted to Dr. H. Halpern whose lectures stimulated my interest in the subject. I am also thankful to Dr. V. Kaftal for several interesting discussions and to Ms. Jeong Hee Hong for careful proofreading of the manuscript. I express my gratitude to The Taft Foundation whose support made possible the completion of this project.

References

Department of Mathematical Sciences, Old Chemistry Bld., ML 25, University of Cincinnati, Cincinnati, Ohio 45221
E-mail address: szymanski@ucbeh.san.uc.edu