ORTHOCOMPACTNESS IN INFINITE PRODUCT SPACES

NOBUYUKI KEMOTO AND YUKINOBU YAJIMA

(Communicated by Franklin D. Tall)

Dedicated to Professor Akihiro Okuyama on his 60th birthday

Abstract. In this paper, we prove the following results for an infinite product space $X = \prod_{\alpha \in K} X_\alpha$.

1. If a dense subspace of X is orthocompact, then it is κ-metacompact.
2. Assume that all finite subproducts of X are hereditarily orthocompact. If a subspace of X is κ-metacompact, then it is orthocompact.

1. Introduction

Throughout this paper, all spaces are assumed to be regular T_1, κ denotes an infinite cardinal, and all product spaces are infinite product spaces. Whenever we consider a product space $\prod_{\alpha \in K} X_\alpha$, we always assume that each X_α contains at least two points.

Beslagić [Be] proved that a product space $X = \prod_{\alpha \in K} X_\alpha$ is κ-paracompact if it is normal. Conversely, Aoki [Ao] proved that a product space X is normal (orthocompact) if it is κ-paracompact and each finite subproduct of X is normal (orthocompact). In these connections, we recall Scott’s result [Sl] that a space Z is κ-metacompact if $Z \times 2^\kappa$ is orthocompact.

In this paper, we prove that a dense subspace of a product space $X = \prod_{\alpha \in K} X_\alpha$ is κ-metacompact if it is orthocompact. Conversely, we also prove that a product space X is orthocompact if it is κ-metacompact and each finite subproduct of X is hereditarily orthocompact. Moreover, we can give various applications of these results.

In the rest of this section, we state notation and basic facts. For a set S and a cardinal λ, we define $[S]^{<\lambda} = \{T \subset S : |T| < \lambda\}$, $[S]^{\leq \lambda} = \{T \subset S : |T| \leq \lambda\}$, and $[S]^\lambda = \{T \subset S : |T| = \lambda\}$, where $|T|$ denotes the cardinality of T. Let \mathcal{U} be a collection of subsets of S and $x \in S$. Then $\langle \mathcal{U} \rangle_x$ denotes $\{U \in \mathcal{U} : x \in U\}$. We say that a collection \mathcal{V} of subsets of S is a weak refinement of \mathcal{U} if each member of \mathcal{V} is contained in some member of \mathcal{U}. Furthermore, such a \mathcal{V} is a refinement of \mathcal{U} if $\bigcup \mathcal{V} = \bigcup \mathcal{U}$.
Let $X = \prod_{\alpha \in \kappa} X_\alpha$ be a product space. For an $F \subseteq \kappa$, we denote by $X(F)$ the subproduct $\prod_{\alpha \in F} X_\alpha$ and denote by π_F the canonical projection map $X \to X(F)$. Such an $X(F)$ is called a finite subproduct of X if F is finite. In particular, we write X_α and π_α for $X(\{\alpha\})$ and $\pi(\{\alpha\})$, respectively.

A space X is (κ)-metacompact if each open cover of X (with cardinality \leq \kappa) has a point-finite open refinement. A space X is (weakly) submetacompact (or (weakly) θ-refinable) if for each open cover \mathcal{U} of X there is a sequence $\{\mathcal{U}_n: n \in \omega\}$ of (weak) open refinements of \mathcal{U} such that for each $x \in X$ there is an $n \in \omega$ such that $(x \in \bigcup \mathcal{U}_n$ and) \mathcal{U}_n is point-finite at x. We define (weak) κ-submetacompactness analogously. In particular, a sequence $\{\mathcal{U}_n: n \in \omega\}$ of covers of X is called a θ-sequence if for each $x \in X$ there is an $n \in \omega$ such that \mathcal{U}_n is point-finite at x.

An open cover \mathcal{U} of a space X is interior-preserving if $\bigcap \mathcal{U}'$ is open in X for each $\mathcal{U} \subseteq \mathcal{U}$. A space X is (κ)-orthocompact if every open cover of X (with cardinality \leq \kappa) has an interior-preserving open refinement. Note that a space X is orthocompact if and only if every open cover \mathcal{U} has an open refinement \mathcal{V} of \mathcal{U} such that $\bigcap(\mathcal{V}_x)$ is a (an open) neighborhood of x. A space X is (weakly) suborthocompact [KY, Ya] if for each open cover \mathcal{U} of X there is a sequence, $\{\mathcal{U}_n: n \in \omega\}$ of (weak) open refinements of \mathcal{U} such that for each $x \in X$ there is an $n \in \omega$ such that $\bigcap(\mathcal{U}_n)_x$ is a neighborhood of x. We define (weak) κ-suborthocompactness analogously. In particular, a sequence $\{\mathcal{U}_n: n \in \omega\}$ of covers of X is called an ι-sequence [KY] if for each $x \in X$ there is an $n \in \omega$ such that $\bigcap(\mathcal{U}_n)_x$ is a neighborhood of x. Clearly, each θ-sequence of open covers of X is an ι-sequence.

By these definitions, the following diagram is easily verified. But note that the ordinal space ω_1 is (hereditarily) orthocompact but not weakly (ω_1-) submetacompact.

\[
\begin{array}{ccc}
\text{metacompact} & \longrightarrow & \text{submetacompact} \\
\downarrow & & \downarrow \\
\text{orthocompact} & \longrightarrow & \text{suborthocompact}
\end{array}
\]

\begin{align*}
\text{weakly submetacompact} & \quad \text{weakly suborthocompact}
\end{align*}

2. κ-ORTHOCOMPACTNESS IN PRODUCT SPACES

Theorem 2.1. Let Y be a dense subspace of a product space $X = \prod_{\alpha \in \kappa} X_\alpha$. Then Y is κ-metacompact (κ-submetacompact, weakly κ-submetacompact) if and only if it is κ-orthocompact (κ-suborthocompact, weakly κ-suborthocompact).

Proof. We prove the “if” part. Let $\mathcal{U} = \{U_\alpha: \alpha \in \kappa\}$ be an open cover of Y with cardinality \leq κ. First we show that \mathcal{U} has an open refinement (\mathcal{V}) of cardinality \leq κ such that $\text{int}_Y(\bigcap \mathcal{V}_x) = 0$ for each $\mathcal{V}_x \in [\mathcal{W}]^\omega$.

For each $\alpha \in \kappa$, pick distinct two points $p_\alpha(0)$ and $p_\alpha(1)$ in X_α. Since X_α is regular T_1, we take an open neighborhood $N_\alpha(i)$ of $p_\alpha(i)$, where $i \in \mathbb{Z} = \{0, 1\}$, such that $X_\alpha = N_\alpha(0) \cup N_\alpha(1)$ and $p_\alpha(1 - i) \notin \text{cl}_{X_\alpha} N_\alpha(i)$ for each $\alpha \in \kappa$ and each $i \in \mathbb{Z}$. Let $G_\alpha(i) = \pi_\alpha^{-1}(N_\alpha(i)) \cap Y$ for each $\alpha \in \kappa$ and each $i \in \mathbb{Z}$. Note that each $G_\alpha(i)$ is open in Y and $Y = G_\alpha(0) \cup G_\alpha(1)$ for each $\alpha \in \kappa$.

Claim. $\text{int}_Y(\bigcap_{\alpha \in A} G_\alpha(i)) = 0$ for each $A \in [\kappa]^\omega$ and each $i \in \mathbb{Z}$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proof. Assume that there are an \(A \in [\kappa]^\omega \), an \(i \in 2 \), and a \(y \in Y \) such that \(y \in \text{int}_Y(\bigcap_{\alpha \in A} G_\alpha(i)) \). Then there are an \(F \in [\kappa]^{<\omega} \) and an open set \(V \) in \(X(F) \) such that \(y \in \pi_F^{-1}(V) \cap Y \subset \bigcap_{\alpha \in A} G_\alpha(i) \). Since \(F \) is finite and \(A \) is infinite, pick a \(\beta \) in \(A - F \). Since \(Y \) is dense in \(X \) and \(\beta \notin F \), there is a point \(z \) in \(\pi_F^{-1}(V) \cap \pi_\beta^{-1}(X_\beta - \text{cl} N_\beta(i)) \cap Y \). Then we have \(z \in \pi_F^{-1}(V) \cap Y \subset G_\beta(i) \subset \pi_\beta^{-1}(N_\beta(i)) \). This contradicts \(z \in \pi_\beta^{-1}(X_\beta - \text{cl} N_\beta(i)) \) and completes the proof of the claim.

Put \(\mathcal{U} = \{ U_\alpha \cap G_\alpha(i) : \alpha \in \kappa \text{ and } i \in 2 \} \). Then it follows from the claim that \(\mathcal{U} \) is a desired open refinement of \(\mathcal{U} \).

Now, we prove only the second case. From the above argument, we may assume that \(\mathcal{U} = \{ U_\alpha : \alpha \in \kappa \} \) is an open cover of \(Y \) such that \(\text{int}_Y(\bigcap \mathcal{U}') = 0 \) for each \(\mathcal{U}' \in [\mathcal{U}]^\omega \). There is an \(i \)-sequence \(\{ \mathcal{U}_n : n \in \omega \} \) of open refinements of \(\mathcal{U} \). Then it is easy to see that each \(\mathcal{U}_n \) may be assumed to be a precise open refinement of \(\mathcal{U} \), that is, \(\mathcal{U}_n = \{ V_n(U) : U \in \mathcal{U} \} \) such that \(V_n(U) \subset U \) for each \(U \in \mathcal{U} \). Pick an \(x \in Y \). Choose an \(n \in \omega \) such that \(\bigcap \mathcal{U}_n(x) \) is a neighborhood of \(x \). Assume that \(\bigcap \mathcal{U}_n(x) \) is infinite. Then there is some \(\mathcal{U}' \in [\mathcal{U}]^\omega \) such that \(\{ V_n(U) : U \in \mathcal{U}' \} \subset \bigcap \mathcal{U}_n(x) \). So we have

\[
x \in \text{int}_Y \left(\bigcap \mathcal{U}_n(x) \right) \subset \text{int}_Y \left(\bigcap \{ V_n(U) : U \in \mathcal{U}' \} \right) \subset \text{int}_Y \left(\bigcap \mathcal{U}' \right) = 0.
\]

This is a contradiction. Thus, \(\{ \mathcal{U}_n : n \in \omega \} \) is a \(\theta \)-sequence of open refinements of \(\mathcal{U} \). The proof is complete.

Corollary 2.2. If a product space \(X = \prod_{\alpha \in \kappa} X_\alpha \) is orthocompact (suborthocompact, weakly suborthocompact), then \(X \) is \(\kappa \)-metacompact (\(\kappa \)-submetacompact, weakly \(\kappa \)-submetacompact).

For a space \(X \), \(L(X) \) denotes the Lindelöf degree of \(X \).

Corollary 2.3 [S1, Ya]. A space \(X \) is metacompact (submetacompact, weakly submetacompact) if and only if \(X \times 2^\kappa \) is orthocompact (suborthocompact, weakly suborthocompact) where \(L(X) \leq \kappa \).

Remark. Moreover, we can easily obtain the analogies of [Ao, Theorem 3.1]: A space \(X \) is (weakly) \(\kappa \)-submetacompact if and only if \(X \times A(\kappa) \) is (weakly) \(\kappa \)-suborthocompact, where \(A(\kappa) \) is the one-point compactification of a discrete space of cardinality \(\kappa \). Observe that this is a generalization of Corollary 2.3.

It is known that \(\omega^{\omega_1} \) is not orthocompact; see [Ao, Theorem 3.4] or [S2, Theorem 2.4]. Moreover, we have

Corollary 2.4. \(\omega^{\omega_1} \) is not suborthocompact.

Proof. Assume that \(X = \omega^{\omega_1} \) is suborthocompact. Then, by Corollary 2.2, \(X \) is \(\omega_1 \)-submetacompact. Since the weight of \(X \) is \(\omega_1 \), it is submetacompact. But it follows from the statement in [PP, p. 63] that \(X \) is not submetacompact. This is a contradiction.

Let \(Y \) be a \(\Sigma \)-product of \(\{ X_\alpha : \alpha \in \kappa \} \). Then \(Y \) is said to be proper [Pr, §7] if \(Y \) is a proper subspace of \(\prod_{\alpha \in \kappa} X_\alpha \) (i.e., \(\kappa \geq \omega_1 \) and \(|X_\alpha| \geq 2 \) for each \(\alpha \in \kappa \)).

Corollary 2.5. All proper \(\Sigma \)-products are not weakly suborthocompact.

Proof. Let \(Y \) be a proper \(\Sigma \)-product of \(\{ X_\alpha : \alpha \in \kappa \} \), where \(\kappa \geq \omega_1 \). Assume that \(Y \) is weakly suborthocompact. Since \(Y \) is dense in \(X \), it follows from
Theorem 2.1 that \(Y \) is weakly \(\kappa \)-submetacompact. Since \(Y \) contains a closed subspace which is homeomorphic to the ordinal space \(\omega_1 \) (cf. [Pr, Proposition 7.2]), the space \(\omega_1 \) is weakly \(\kappa \)-submetacompact. But it is well known that the space \(\omega_1 \) is not weakly \(\omega_1 \)-submetacompact. This is a contradiction.

Corollary 2.6. Let \(X \) be a product space of paracompact \(p \)-spaces (e.g., metrizable spaces). Then the following are equivalent.

1. \(X \) is (sub)orthocompact.
2. \(X \) is normal.
3. \(X \) is paracompact.

Using Corollary 2.4, the proof is similar to that of [Pr, Corollary 6.5].

Remark. The condition “paracompact \(p \)-space” in Corollary 2.6 is essential. In fact, let \(X \) be a \(\Sigma \)-product in \(2^{\omega_1} \). Then \(X \) is homeomorphic to \(X^{\omega} \). It follows from [Pr, Theorem 7.4] and Corollary 2.5 that \(X^{\omega} \) is normal but not weakly suborthocompact.

We obtain the following generalization of [Ao, Theorem 3.5] or [S2, Theorem 2.5].

Corollary 2.7. The following are equivalent for a space \(X \).

1. \(X \) is compact.
2. \(X^{\kappa} \) is suborthocompact for any cardinal \(\kappa \).
3. \(X^{\kappa} \) is suborthocompact for some cardinal \(\kappa \) with \(\kappa \geq \omega_1 \cdot L(X) \).

Using Corollaries 2.3 and 2.4, the proof is parallel to that of [Ao, Theorem 3.5].

If \(\omega^{\omega_1} \) was not weakly submetacompact, then “suborthocompact” in most of our corollaries could be replaced by “weakly suborthocompact”. Hence, we conclude this section with the following problem.

Problem 2.8. Is \(\omega^{\omega_1} \) not weakly submetacompact?

3. \(\kappa \)-METACOMPACTNESS IN PRODUCT SPACES

As the converse of Corollary 2.2, we obtain the following:

Theorem 3.1. Assume that all finite subproducts of a product space \(X = \prod_{\alpha \in \kappa} X_\alpha \) are hereditarily orthocompact. If a subspace \(Y \) of \(X \) is \(\kappa \)-metacompact (\(\kappa \)-submetacompact, weakly \(\kappa \)-submetacompact), then it is orthocompact (suborthocompact, weakly suborthocompact).

Proof. We prove only the second case. Let \(\mathcal{U} \) be an open cover of \(Y \). We may assume that, for each \(U \in \mathcal{U} \), there are an \(F(U) \in [\kappa]^{<\omega} \) and an open set \(G(U) \) in \(X(F(U)) \) such that \(U = \pi_{F(U)}^{-1}(G(U)) \cap Y \). For each \(F \in [\kappa]^{<\omega} \), put \(\mathcal{Z}_F = \{ U \in \mathcal{U} : F(U) = F \} \) and \(G_F = \bigcup \{ G(U) : U \in \mathcal{Z}_F \} \). Then it is easy to check that each \(G_F \) is open in \(X(F) \) and \(\mathcal{A} = \{ \pi_F^{-1}(G_F) \cap Y : F \in [\kappa]^{<\omega} \} \) is an open cover of \(Y \). Since each \(X(F) \) is hereditarily orthocompact, there is an interior-preserving collection \(\mathcal{B}(F) = \{ B(F) : U \in \mathcal{Z}_F \} \) of open sets in \(X(F) \) such that \(B(F) \subset G(U) \) for each \(U \in \mathcal{Z}_F \) and \(\bigcup \mathcal{B}(F) = G_F \). By the \(\kappa \)-submetacompactness of \(Y \) and \(|\mathcal{A}| \leq \kappa \), there is a \(\theta \)-sequence \(\{ V_F^n : n \in \omega \} \) of open refinements of \(\mathcal{A} \). We may assume that \(\mathcal{V}_n = \{ V_F^n : F \in [\kappa]^{<\omega} \} \).
such that $V_F^n \subset \pi_F^{-1}(G_F) \cap Y$ for each $F \in [\kappa]^{<\omega}$ and each $n \in \omega$. Put $\mathcal{W}_F^n = \{\pi_F^{-1}(B_F(U)) : U \in \mathcal{U}_F\}$ for each $F \in [\kappa]^{<\omega}$ and each $n \in \omega$. Then it is easy to check that each \mathcal{W}_F^n is an interior-preserving collection of open sets in Y whose union is V_F^n. Put $\mathcal{W}_n = \bigcup\{\mathcal{W}_F^n : F \in [\kappa]^{<\omega}\}$ for each $n \in \omega$. Observe that each \mathcal{W}_n is an open refinement of \mathcal{U}. We show that $\{\mathcal{W}_n : n \in \omega\}$ is an ω-sequence. Pick an $x \in X$. Since $\{\mathcal{V}_n : n \in \omega\}$ is a θ-sequence, take an $n \in \omega$ such that $(\mathcal{V}_n)_x$ is finite, say $(\mathcal{V}_n)_x = \{V_F^n : F \in \mathcal{F}\}$ for some $\mathcal{F} \subseteq [\kappa]^{<\omega}$. Since \mathcal{W}_F^n is interior-preserving and $x \in V_F^n = \bigcup \mathcal{W}_F^n$, $\bigcap (\mathcal{W}_F^n)_x$ is an open neighborhood of x for each $F \in \mathcal{F}$. Since $(\mathcal{W}_n)_x = \bigcup_{F \in \mathcal{F}} (\mathcal{W}_F^n)_x$ and $|\mathcal{F}| < \omega$, it follows that $\bigcap (\mathcal{W}_n)_x = \bigcap_{F \in \mathcal{F}} (\bigcap (\mathcal{W}_F^n)_x)$ is an open neighborhood of x. This completes the proof.

Considering [Ao, Corollary 2.5], it is natural to raise

Problem 3.2. If a product space $X = \prod_{\alpha \in \kappa} X_\alpha$ is κ-metacompact and all finite subproducts of X are orthocompact, is X orthocompact?

Proposition 3.3. Assume that all finite subproducts of a product space $X = \prod_{\alpha \in \kappa} X_\alpha$ are hereditarily metacompact. If a dense subspace Y of X is κ-orthocompact (κ-suborthocompact, weakly κ-suborthocompact), then Y is metacompact (submetacompact, weakly submetacompact).

Proof. The second case: Observe that Y is κ-submetacompact according to Theorem 2.1, because Y is a κ-suborthocompact dense subspace of X. Then replacing “interior-preserving” by “point-finite” in the proof of Theorem 3.1, we can prove similarly.

Corollary 3.4. Let X be a product space of metrizable spaces and Y a dense subspace of X. Then Y is orthocompact (suborthocompact, weakly suborthocompact) if and only if it is metacompact (submetacompact, weakly submetacompact).

We can consider this is an analogue of [Ba, Theorem 1].

Remark. Under the assumption of Corollary 3.4, X is normal if and only if it is paracompact (see Corollary 2.6). But one cannot replace “orthocompact” and “metacompact” by “normal” and “paracompact”, respectively, in Corollary 3.4. In fact, let Y be a Σ-product in $X = 2^{\omega_1}$. Then Y is a normal nonparacompact, dense subspace of X.

References

Department of Mathematics, Faculty of Education, Oita University, Dannoharu, Oita, 870-11 Japan
E-mail address: nkemoto@cc.oita-u.ac.jp

Department of Mathematics, Kanagawa University, Yokohama, 221 Japan
E-mail address: yuki@kani.cc.kanagawa-u.ac.jp