Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

An inverse spectral problem for Sturm-Liouville operators with discontinuous coefficients


Author: Robert Carlson
Journal: Proc. Amer. Math. Soc. 120 (1994), 475-484
MSC: Primary 34A55; Secondary 34B24, 34L40
DOI: https://doi.org/10.1090/S0002-9939-1994-1197532-5
MathSciNet review: 1197532
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For generic Sturm-Liouville problems with piecewise constant leading coefficients, the leading coefficient can be determined up to a finite ambiguity from the eigenvalues of the problem.


References [Enhancements On Off] (What's this?)

  • [1] L. Andersson, Inverse eigenvalue problems with discontinuous coefficients, Inverse Problems 4 (1988), 353-397. MR 954898 (89g:34015)
  • [2] G. Birkhoff and G. Rota, Ordinary differential equations, Blaisdell, Waltham, MA, 1969.
  • [3] G. Borg, Eine Umkehrung der Sturm-Liouville Eigenwertaufgabe, Acta Math. 76 (1946), 1-96. MR 0015185 (7:382d)
  • [4] K. Chadan and P. C. Sabatier, Inverse problems in quantum scattering theory, Springer-Verlag, New York, 1989. MR 985100 (90b:81002)
  • [5] C. F. Coleman and J. R. McLaughlin, Solution of the inverse spectral problem for an impedance with integrable derivative, I, II, Comm. Pure Appl. Math. 46 (1993), 145-184, 185-212. MR 1199197 (93m:34017)
  • [6] I. M. Gelfand and B. M. Levitan, On the determination of a differential equation by its spectral function, Amer. Math. Soc. Transl. Ser. 2, vol. 1, Amer. Math. Soc., Providence, RI, 1955, pp. 253-304. MR 0073805 (17:489c)
  • [7] H. Gottlieb, Iso-spectral operators: some model examples with discontinuous coefficients, J. Math. Anal. Appl. 132 (1988), 123-137. MR 942359 (89i:34022)
  • [8] O. Hald, Inverse eigenvalue problems, Comm. Pure Appl. Math. 37 (1984), 539-577. MR 752591 (85j:34037)
  • [9] I. S. Kac and M. G. Krein, On the spectral functions of the string, Amer. Math. Soc. Transl. Ser. 2, vol. 103, Amer. Math. Soc., Providence, RI, 1974, pp. 19-102.
  • [10] R. Krueger, Inverse problems for nonabsorbing media with discontinuous material properties, J. Math. Phys. 23 (1982), 396-404. MR 644570 (83b:78020)
  • [11] E. R. Lapwood and T. Usami, Free oscillations of the earth, Cambridge Univ. Press, Cambridge, 1981.
  • [12] J. R. McLaughlin, Analytical methods for recovering coefficients in differential equations from spectral data, SIAM Rev. 28 (1986), 53-72. MR 828436 (87d:34034)
  • [13] A. McNabb, R. Anderssen, and E. Lapwood, Asymptotic behaviour of the eigenvalues of a Sturm-Liouville system with discontinuous coefficients, J. Math. Anal. Appl. 54 (1976), 741-751. MR 0404752 (53:8552)
  • [14] R. Newton, Scattering theory of waves and particles, McGraw-Hill, New York, 1966. MR 0221823 (36:4875)
  • [15] J. Poeschel and E. Trubowitz, Inverse spectral theory, Academic Press, Orlando, 1987. MR 894477 (89b:34061)
  • [16] R. Young, An introduction to nonharmonic Fourier series, Academic Press, New York, 1980. MR 591684 (81m:42027)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34A55, 34B24, 34L40

Retrieve articles in all journals with MSC: 34A55, 34B24, 34L40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1197532-5
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society