Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Some geometric properties of spaces associated with multiple stable integrals

Author: Jerzy Szulga
Journal: Proc. Amer. Math. Soc. 120 (1994), 457-464
MSC: Primary 60H05; Secondary 46E30, 46N30
MathSciNet review: 1203992
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate properties of vector lattices of multiply integrable functions with respect to a symmetric stable process.

References [Enhancements On Off] (What's this?)

  • [CRW] Stamatis Cambanis, Jan Rosiński, and Wojbor A. Woyczyński, Convergence of quadratic forms in 𝑝-stable random variables and 𝜃_{𝑝}-radonifying operators, Ann. Probab. 13 (1985), no. 3, 885–897. MR 799426
  • [F] W. Feller, An introduction to probability theory and its applications, 2nd ed., Wiley, New York, 1971.
  • [Kri] J. L. Krivine, Théorèmes de factorisation dans les espaces réticulés, Séminaire Maurey-Schwartz 1973–1974: Espaces 𝐿^{𝑝}, applications radonifiantes et géométrie des espaces de Banach, Exp. Nos. 22 et 23, Centre de Math., École Polytech., Paris, 1974, pp. 22 (French). MR 0440334
  • [KS1] Wiesław Krakowiak and Jerzy Szulga, Hypercontraction principle and random multilinear forms, Probab. Theory Related Fields 77 (1988), no. 3, 325–342. MR 931501, 10.1007/BF00319292
  • [KS2] -, Multilinear random forms, Ann. Probab. 14 (1988), 955-973.
  • [KS3] Wiesław Krakowiak and Jerzy Szulga, A multiple stochastic integral with respect to a strictly 𝑝-stable random measure, Ann. Probab. 16 (1988), no. 2, 764–777. MR 929077
  • [KaS] O. Kallenberg and J. Szulga, Multiple integration with respect to Poisson and Lévy processes, Probab. Theory Related Fields 83 (1989), no. 1-2, 101–134. MR 1012497, 10.1007/BF00333146
  • [LT] Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Springer-Verlag, Berlin-New York, 1979. Function spaces. MR 540367
  • [M] Julian Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics, vol. 1034, Springer-Verlag, Berlin, 1983. MR 724434
  • [Ru] Walter Rudin, Functional analysis, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. McGraw-Hill Series in Higher Mathematics. MR 0365062
  • [RW] J. Rosiński and W. A. Woyczyński, On Itô stochastic integration with respect to 𝑝-stable motion: inner clock, integrability of sample paths, double and multiple integrals, Ann. Probab. 14 (1986), no. 1, 271–286. MR 815970
  • [S1] Jerzy Szulga, A note on hypercontractivity of stable random variables, Ann. Probab. 18 (1990), no. 4, 1746–1758. MR 1071822
  • [S2] -, Limit theorems of some randomized nonlinear functionals of empirical measures, Auburn University, preprint, 1991.
  • [S3] -, Limit distributions of $ U$-statistics resampled by symmetric stable laws, Probab. Theory Related Fields 94 (1990), 83-90.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 60H05, 46E30, 46N30

Retrieve articles in all journals with MSC: 60H05, 46E30, 46N30

Additional Information

Keywords: Multiple stochastic integral, Banach lattice, $ F$-lattice, stable distribution, $ {L^p}$-space, $ p$-convexity, $ p$-concavity, Convexification, Rademacher type
Article copyright: © Copyright 1994 American Mathematical Society