Editorial Information

To be published in the Proceedings, a paper must be correct, new, nontrivial, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Proceedings Editors solicit and encourage publication of worthy papers of length not exceeding 10 published pages. Published pages are the same size as those generated in the style files provided for \TeX or \LaTeX.

Very short notes not to exceed two printed pages are also accepted, and appear under the heading SHORTER NOTES. Items deemed suitable include an elegant new proof of an important and well-known theorem, an illuminating example or counterexample, or a new viewpoint on familiar results. New results, if of a brief and striking character, might also be acceptable, though in general a paper which is merely very short will not be suitable for the SHORTER NOTES department.

As of February 4, 1995, the backlog for this journal was approximately 9 issues. This estimate is the result of dividing the number of manuscripts for this journal in the Providence office that have not yet gone to the printer on the above date by the average number of articles per issue over the previous twelve months, reduced by the number of issues published in four months (the time necessary for editing and composing a typical issue).

A Copyright Transfer Agreement is required before a paper will be published in this journal. By submitting a paper to this journal, authors certify that the manuscript has not been submitted to nor is it under consideration for publication by another journal, conference proceedings, or similar publication.

Information for Authors and Editors

The first page of an article must consist of a descriptive title, followed by an abstract that summarizes the article in language suitable for workers in the general field (algebra, analysis, etc.). The descriptive title should be short, but informative; useless or vague phrases such as "some remarks about" or "concerning" should be avoided. The abstract should be at least one complete sentence, and at most 150 words. Included with the footnotes to the paper, there should be the 1991 Mathematics Subject Classification representing the primary and secondary subjects of the article. This may be followed by a list of key words and phrases describing the subject matter of the article and taken from it. A list of the numbers may be found in the annual index of Mathematical Reviews, published with the December issue starting in 1990, as well as from the electronic service e-MATH [telnet e-MATH.ams.org (or telnet 130.44.1.100). Login and password are e-math]. For journal abbreviations used in bibliographies, see the list of serials in the latest Mathematical Reviews annual index. When the manuscript is submitted, authors should supply the editor with electronic addresses if available. These will be printed after the postal address at the end of each article.

Two copies of the paper should be sent directly to the appropriate Editor and the author should keep one copy.

\TeX files available upon request. Authors may request a copy of the \TeX files of their papers by sending e-mail to file-request@math.ams.org or by contacting the Editorial Department, American Mathematical Society, P.O. Box 6248, Providence, RI 02940-6248. The request should include the title of the paper, the name(s) of the author(s), the name of the publication in which the paper has or will appear, and the volume and issue numbers if known. The \TeX file will be sent to the author making the request after the article goes to the printer. If the requestor can receive Internet e-mail, please include the e-mail address to which the file should be sent. Otherwise please indicate a diskette format and postal address to which a disk should be mailed. Note: Because
\TeX{} production at the AMS sometimes requires extra fonts and macros that are not yet publicly available, \TeX{} files cannot be guaranteed to run through the author's version of \TeX{} without errors. The AMS regrets that it cannot provide support to eliminate such errors in the author's \TeX{} environment.

Electronically prepared manuscripts. The AMS encourages submission of electronically prepared manuscripts in \LaTeX{} or \AmSTeX{} because properly prepared electronic manuscripts save the author proofreading time and move more quickly through the production process. To this end, the Society has prepared author packages for each AMS publication. Author packages include instructions for preparing electronic manuscripts, the *AMS Author Handbook*, samples, and a style file that generates the particular design specifications of that publication series for both \AmSTeX{} and \LaTeX{}.

Those authors who make use of these style files from the beginning of the writing process will further reduce their own efforts. Electronically submitted manuscripts prepared in plain \TeX{} or \LaTeX{} are normally not acceptable due to the high amount of technical time required to insure that the file will run properly through the AMS in-house production system. Users of plain \TeX{} should have little difficulty learning \AmSTeX{}, and \LaTeX{} users will find that \AmSTeX{} is the same as \LaTeX{} with additional commands to simplify the typesetting of mathematics.

Authors with FTP access may retrieve an author package from the Society's Internet node e-MATH.ams.org (130.44.1.100). For those without FTP access, the author package can be obtained free of charge by sending e-mail to pub@math.ams.org (Internet) or from the Publication Division, American Mathematical Society, P.O. Box 6248, Providence, RI 02940-6248. When requesting an author package, please specify \AmSTeX{} or \LaTeX{} and the publication in which your paper will appear.

At the time of submission, authors should indicate if the paper has been prepared using \AmSTeX{} or \LaTeX{} and provide the Editor with a paper manuscript that matches the electronic manuscript. The final version of the electronic manuscript should be sent to the Providence office immediately after the paper has been accepted for publication. The author should also send the final version of the paper manuscript to the Editor, who will forward a copy to the Providence office. Editors will require authors to send their electronically prepared manuscripts to the Providence office in a timely fashion. Electronically prepared manuscripts can be sent via e-mail to pub-submit@math.ams.org (Internet) or on diskette to the Editorial Department, American Mathematical Society, P.O. Box 6248, Providence, RI 02940-6248. When submitting an electronic manuscript, please be sure to include a message indicating in which publication the paper has been accepted. No corrections will be accepted electronically. Authors must mark their changes on their proof copies and return them to the Providence office. Complete instructions on how to submit files are included in the author package.

Any inquiries concerning a paper that has been accepted for publication should be sent directly to the Editorial Department, American Mathematical Society, P.O. Box 6248, Providence, RI 02940-6248.
Editors

Authors are requested to send papers directly to the appropriate Editor (the one whose area of responsibility and expertise, as described below, most closely approximates the subject field of the manuscript). Only when in doubt about an appropriate Editor, should manuscripts be sent to the Coordinating Editor responsible for the area in mathematics most closely connected to the paper. If in doubt about the area, send manuscript to the Managing Editor, to whom all other communication about the journal should also be addressed. (All addresses should include the line “Department of Mathematics”, unless another department is indicated.)

Managing Editor: Irwin Kra, SUNY at Stony Brook, Stony Brook, NY 11794-3651
e-mail: irwin@math.sunysb.edu

1. ODE, PDE, GLOBAL ANALYSIS, AND DYNAMICAL SYSTEMS
 Coordinating Editor: Linda Keen, CUNY-Lehman College, Bronx, NY 10468,
e-mail: ljdklc@sunyvm.cuny.cuny.edu or ljdklc@sunyvm.bitnet
 Partial differential equations, Jeffrey B. Rauch, University of Michigan, Ann Arbor, MI 48109, e-mail: rauch@math.UMich.edu
 Dynamical systems and ergodic theory, Mary Rees, Department of Pure Mathematics, University of Liverpool, P.O. Box 147, Liverpool L69 3BX, United Kingdom,
e-mail: maryrees@liverpool.ac.uk
 Ordinary differential equations and special functions, Hal L. Smith, Arizona State University, Tempe, AZ 85287, e-mail: halsmith@math.la.asu.edu

Global analysis, Linda Keen

2. LIE GROUPS, TOPOLOGY, AND GEOMETRY
 Coordinating Editor: Peter Li, University of California, Irvine, CA 92717,
e-mail: pli@math.uci.edu
 Topological groups and Lie groups (symmetric spaces), Roe Goodman, Rutgers University, New Brunswick, NJ 08903-2101, e-mail: goodman@math.rutgers.edu
 Riemannian geometry (including affine, pseudo-Riemannian, contact, classical, and Lorentzian geometries), Christopher Croke, University of Pennsylvania, Philadelphia, PA 19104-6317,
e-mail: c.croke@math.upenn.edu
 Geometric analysis (geometric PDE, minimal surfaces, harmonic maps) and Kahler geometry, Peter Li
 Algebraic topology (higher dimensional topology), Thomas Goodwillie, Brown University, Box 1917, Providence, RI 02912, e-mail: tom@brownvm.bitnet
 Metric and geometric topology, James West, Cornell University, White Hall, Ithaca, NY 14853-7901, e-mail: west@math.cornell.edu
 Set-theoretic and general topology, Franklin D. Tall, University of Toronto, Toronto, Ontario, Canada M5S 1A1, e-mail: tall@math.toronto.edu
 Low dimensional topology and differential topology (knot theory, 3- and 4-manifolds, Gauge-theory), Ronald Stern, University of California, Irvine, CA 92717,
e-mail: rstern@math.uci.edu

3. ANALYSIS AND OPERATOR THEORY
 Coordinating Editor: Clifford J. Earle, Jr., Cornell University, White Hall, Ithaca, NY 14853-7901, e-mail: cliff@math.cornell.edu
 One complex variable and potential theory, Albert Baernstein II, Washington University, St. Louis, MO 63130-4899, e-mail: C31801AB@WVMD.BITNET
 Several complex variables, Eric Bedford, Indiana University, Swain Hall East, Bloomington, IN 47405, e-mail: BEDFORD@ucs.indiana.edu
 Functional analysis, Dale Alspach, Oklahoma State University, Stillwater, OK 74078-0613,
e-mail: als@hilbert.math.okstate.edu
 Complex variables, functional analysis, and operator theory, Theodore W. Gamelin, University of California, Los Angeles, CA 90024, e-mail: twg@math.ucla.edu
 Functional analysis and operator theory, Palle E. T. Jorgensen, University of Iowa, Iowa City, IA 52242

Classical and harmonic analysis, J. Marshall Ash, DePaul University, Chicago, IL 60614,
e-mail: MATJMA@DEPAUL.BITNET
Classical and harmonic analysis, Christopher D. Sogge, University of California, Los Angeles, CA 90024, e-mail: sogge@math.ucla.edu

Analytic number theory and automorphic forms, Dennis A. Hejhal, School of Mathematics, University of Minnesota, Minneapolis, MN 55455-0488, e-mail: hejhal@math.umn.edu

4. ALGEBRA, NUMBER THEORY, AND COMBINATORICS
Coordinating Editor: M. Susan Montgomery, University of Southern California, DRB 155, Los Angeles, CA 90089-1113, e-mail: smontgom@math.usc.edu

General number theory, William W. Adams, University of Maryland, College Park, MD 20742-4015, e-mail: wwa@math.umd.edu

General algebra, Lance W. Small, University of California San Diego, La Jolla, CA 92093-0112, e-mail: lwsmall@ucsd.edu

Commutative algebra, Wolmer V. Vasconcelos, Rutgers University, New Brunswick, NJ 08903-2101, e-mail: vasconce@rings.rutgers.edu

Group theory, Ronald M. Solomon, Ohio State University, Columbus, OH 43210-1101, e-mail: solomon@function.mps.ohio-state.edu

K-theory, algebraic groups, algebraic geometry, Eric M. Friedlander, Northwestern University, Evanston, IL 60208-2730, e-mail: eric@math.nwu.edu

Combinatorics, Jeffry N. Kahn, Rutgers University, New Brunswick, NJ 08903-2101, e-mail: jkahn@math.rutgers.edu

Analytic number theory and automorphic forms, Dennis A. Hejhal, School of Mathematics, University of Minnesota, Minneapolis, MN 55455-0488, e-mail: hejhal@math.umn.edu

Logic and foundations, Andreas R. Blass, University of Michigan, Ann Arbor, MI 48109-1003, e-mail: ablass@umich.edu

Lie algebras and Lie groups, Roe Goodman, Rutgers University, New Brunswick, NJ 08903-2101, e-mail: goodman@math.rutgers.edu

Noncommutative rings, Ken Goodearl, University of California, Santa Barbara, CA 93106, e-mail: goodearl@math.ucsb.edu

5. APPLIED MATHEMATICS, PROBABILITY, AND STATISTICS
Coordinating Editor: James Glimm, Department of Applied Mathematics and Statistics, SUNY at Stony Brook, Stony Brook, NY 11794-3600, e-mail: glimm@ams.sunysb.edu

Probability, Richard T. Durrett, Cornell University, White Hall, Ithaca, NY 14853-7901, e-mail: rtd@cornell.cit.cornell.edu

Statistics, Wei Y. Loh, Department of Statistics, University of Wisconsin, Madison, WI 53706-1693, e-mail: loh@stat.wisc.edu

Applied mathematics, David Sharp, Theoretic Division, Los Alamos National Laboratory MSB285, Los Alamos, NM 87545, e-mail: dhs@lanl.gov

John Trangenstein, Duke University, Durham, NC 27706, e-mail: johnt@math.duke.edu

Operations research, Joseph S. B. Mitchell, Department of Applied Mathematics and Statistics, SUNY at Stony Brook, Stony Brook, NY 11794-3600, e-mail: jsbm@ams.sunysb.edu
(Continued from back cover)

Tom Yau-Heng Wan and Thomas Kwok-Keung Au, Parabolic constant mean curvature space-like surfaces ... 559
Murad Özaydin and Gerard Walschap, Vector bundles with no soul ... 565
Shun-Hui Zhu, On open three-manifolds of quasi-positive Ricci curvature ... 569

E. LOGIC AND FOUNDATIONS

Ashok Maitra, Multiple separation theorems ... 573

F. STATISTICS AND PROBABILITY

Davar Khoshnevisan, A discrete fractal in \mathbb{Z}^d ... 577
A. K. Gupta and G. J. Székely, On location and scale maximum likelihood estimators ... 585

G. TOPOLOGY

Nobuyuki Kemoto and Yukinobu Yajima, Orthocompactness in infinite product spaces ... 591
Jian-Ping Zhu, A note on subcontinua of $\beta([0, \infty)) - [0, \infty)$... 597
Érik Bédos, On the C^*-algebra generated by the left regular representation of a locally compact group ... 603
Jinkun Lin, Some products of β-elements in the Novikov E_2 term of Moore spectra ... 609
W. G. Dwyer, D. M. Kan, J. H. Smith, and C. R. Stover, A Π-algebra spectral sequence for function spaces ... 615
Karl H. Hofmann and Christian Terp, Compact subgroups of Lie groups and locally compact groups ... 623
S. Dragotti, R. Esposito, and G. Magro, Construction of functors connecting homology and homotopy theories ... 635

SHORTER NOTES

Jong-Guk Bak, Hörmander's condition and a convolution operator generalizing Riesz potentials ... 647
Brian Forrest and Mahatheva Skantharajah, A note on a type of approximate identity in the Fourier algebra ... 651
Bernd Günther, A compactum that cannot be an attractor of a self-map on a manifold ... 653
A. ALGEBRA, NUMBER THEORY, AND COMBINATORICS

Aner Shalev, Graded permutation modules and a theorem of Quillen 333
Zhaohua Luo, On the ramification theory of regular schemes .. 339
M. V. Sapir and M. V. Volkov, On the joins of semigroup varieties with the variety of commutative semigroups .. 345
Deanna M. Caveny, Quantitative transcendence results for numbers associated with Liouville numbers .. 349
William Heinzer and Christel Rotthaus, Formal fibers and complete homomorphic images 359
Dieter Happel and Shiping Liu, Module categories without short cycles are of finite type . 371
Gerhard Turnwald, Multiplicative subgroups of finite index in a division ring 377
Shiro Goto, Koji Nishida, and Kei-ichi Watanabe, Non-Cohen-Macaulay symbolic blow-ups for space monomial curves and counterexamples to Cowsik's question .. 383
Chunsheng Ban, Aureole of a quasi-ordinary singularity .. 393
E. Ballico, On varieties as hyperplane sections ... 405
J.-Cl. Evard and F. Jafari, The set of all $m \times n$ rectangular real matrices of rank r is connected by analytic regular arcs .. 413
Jonathan Sondow, Analytic continuation of Riemann's zeta function and values at negative integers via Euler's transformation of series .. 421
Stéphane Louboutin, Lower bounds for relative class numbers of CM-fields 425

B. ANALYSIS

Jong-Guk Bak, An interpolation theorem and a sharp form of a multilinear fractional integration theorem .. 435
Paul W. Eloe and Jerry Ridenhour, Sign properties of Green's functions for a family of two-point boundary value problems .. 443
Horst Osswald, A note on liftings of linear continuous functionals ... 453
Jerzy Szulga, Some geometric properties of spaces associated with multiple stable integrals 457
Víctor Jiménez López, Paradoxical functions on the interval ... 465
Robert Carlson, An inverse spectral problem for Sturm-Liouville operators with discontinuous coefficients ... 475
Vu Ngoc Phat and Trinh Cong Dieu, On the Krein-Rutman theorem and its applications to controllability .. 495
Joel L. Weiner, Isoperimetric inequalities for immersed closed spherical curves 501
Emilio Bujalance, Grzegorz Gromadzki, and David Singerman, On the number of real curves associated to a complex algebraic curve .. 507
Peter Šemrl, Jordan $*$-derivations of standard operator algebras ... 515
Wojciech Szymański, Finite index subfactors and Hopf algebra crossed products 519
Ana Lía Durán and Ricardo Estrada, Strong moment problems for rapidly decreasing smooth functions ... 529
Juha Heinonen and Pekka Koskela, A_∞-condition for the Jacobian of a quasi-conformal mapping ... 535
C. E. Chidume, Approximation of fixed points of strongly pseudocontractive mappings 545

D. GEOMETRY

Kazuyuki Enomoto, A generalization of the isoperimetric inequality on S^2 and flat tori in S^3 553

(Continued on inside back cover)