Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A suspension theorem for continuous trace $ C\sp *$-algebras


Author: Marius Dădărlat
Journal: Proc. Amer. Math. Soc. 120 (1994), 761-769
MSC: Primary 46L85; Secondary 19K99, 46L80, 55P99
DOI: https://doi.org/10.1090/S0002-9939-1994-1166354-3
MathSciNet review: 1166354
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathcal{B}$ be a stable continuous trace $ {C^{\ast}}$-algebra with spectrum $ Y$. We prove that the natural suspension map $ {S_{\ast}}:[{C_0}(X),\mathcal{B}] \to [{C_0}(X) \otimes {C_0}({\mathbf{R}}),\mathcal{B} \otimes {C_0}({\mathbf{R}})]$ is a bijection, provided that both $ X$ and $ Y$ are locally compact connected spaces whose one-point compactifications have the homotopy type of a finite CW-complex and $ X$ is noncompact. This is used to compute the second homotopy group of $ \mathcal{B}$ in terms of $ K$-theory. That is, $ [{C_0}({{\mathbf{R}}^2}),\mathcal{B}] = {K_0}({\mathcal{B}_0})$, where $ {\mathcal{B}_0}$ is a maximal ideal of $ \mathcal{B}$ if $ Y$ is compact, and $ {\mathcal{B}_0} = \mathcal{B}$ if $ Y$ is noncompact.


References [Enhancements On Off] (What's this?)

  • [D] J. Dixmier, $ {C^{\ast}}$-algebras, North-Holland, Amsterdam, Oxford, and New York, 1977. MR 0458185 (56:16388)
  • [DN] M. Dadarlat and A. Nemethi, Shape theory and connective $ K$-theory, J. Operator Theory 23 (1990), 207-291. MR 1066807 (91j:46092)
  • [E] E. G. Effros, editor, A selection of problems, Contemp. Math., vol. 10, Amer. Math. Soc., Providence, RI, 1982. MR 679693 (84g:46076)
  • [H] D. Husemoller, Fibre bundles, McGraw-Hill, New York, 1966. MR 0229247 (37:4821)
  • [R] J. Rosenberg, The role of $ K$-theory in noncommutative algebraic topology, Contemp. Math., vol. 10, Amer. Math. Soc., Providence, RI, 1982. MR 658514 (84h:46097)
  • [Sc] C. Schochet, Topological methods for $ {C^{\ast}}$-algebras. III Axiomatic homology, Pacific J. Math. 114 (1984), 399-445. MR 757510 (86g:46102)
  • [Seg] G. Segal, $ K$-homology theory and algebraic $ K$-theory, $ K$-Theory and Operator Algebras (Athens, Georgia, 1975), Lecture Notes in Math., vol. 575, Springer-Verlag, New York, 1977. MR 0515311 (58:24242)
  • [Sp] E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966. MR 0210112 (35:1007)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46L85, 19K99, 46L80, 55P99

Retrieve articles in all journals with MSC: 46L85, 19K99, 46L80, 55P99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1166354-3
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society