The filtration equation in a class of functions decreasing at infinity

Authors:
D. Eidus and S. Kamin

Journal:
Proc. Amer. Math. Soc. **120** (1994), 825-830

MSC:
Primary 35K55; Secondary 35K65, 76S05

DOI:
https://doi.org/10.1090/S0002-9939-1994-1169025-2

MathSciNet review:
1169025

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We deal with the Cauchy and external boundary problems for the nonlinear filtration equation with variable density. For each density we define a class of initial functions , such that for any the problem is uniquely solvable in some set of functions decreasing at infinity with respect to space variables.

**[1]**P. H. Benilan, M. G. Grandall, and M. Pierre,*Solutions of the porous medium equation in**under optimal conditions on initial values*, Indiana Univ. Math. J.**33**(1984), 51-87. MR**726106 (86b:35084)****[2]**H. Brezis and S. Kamin,*Sublinear elliptic equations in*, Manuscripta Math.**74**(1992), 87-106. MR**1141779 (93f:35062)****[3]**E. Di Benedetto,*Continuity of weak solutions to a general porous medium equation*, Indiana Univ. Math. J.**32**(1983), 83-118. MR**684758 (85c:35010)****[4]**D. Eidus,*The Cauchy problem for the non-linear filtration equation*, J. Differential Equations**84**(1990), 309-318. MR**1047572 (91d:35172)****[5]**A. S. Kalashnikov,*The Cauchy problem in a class of growing functions*, Vestnik Moskov. Univ. Ser. VI, Mat. Mekh.**6**(1963), 17. (Russian)**[6]**E. S. Sabinina,*On the Cauchy problem for the equation of the non-stationary gas filtration*, Dokl. Akad. Nauk SSSR**136**(1961), 1034-1037. (Russian) MR**0158190 (28:1416)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
35K55,
35K65,
76S05

Retrieve articles in all journals with MSC: 35K55, 35K65, 76S05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1994-1169025-2

Article copyright:
© Copyright 1994
American Mathematical Society