The filtration equation in a class of functions decreasing at infinity

Authors:
D. Eidus and S. Kamin

Journal:
Proc. Amer. Math. Soc. **120** (1994), 825-830

MSC:
Primary 35K55; Secondary 35K65, 76S05

MathSciNet review:
1169025

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We deal with the Cauchy and external boundary problems for the nonlinear filtration equation with variable density. For each density we define a class of initial functions , such that for any the problem is uniquely solvable in some set of functions decreasing at infinity with respect to space variables.

**[1]**Philippe Bénilan, Michael G. Crandall, and Michel Pierre,*Solutions of the porous medium equation in 𝑅^{𝑁} under optimal conditions on initial values*, Indiana Univ. Math. J.**33**(1984), no. 1, 51–87. MR**726106**, 10.1512/iumj.1984.33.33003**[2]**Haïm Brezis and Shoshana Kamin,*Sublinear elliptic equations in 𝑅ⁿ*, Manuscripta Math.**74**(1992), no. 1, 87–106. MR**1141779**, 10.1007/BF02567660**[3]**Emmanuele DiBenedetto,*Continuity of weak solutions to a general porous medium equation*, Indiana Univ. Math. J.**32**(1983), no. 1, 83–118. MR**684758**, 10.1512/iumj.1983.32.32008**[4]**D. Eidus,*The Cauchy problem for the nonlinear filtration equation in an inhomogeneous medium*, J. Differential Equations**84**(1990), no. 2, 309–318. MR**1047572**, 10.1016/0022-0396(90)90081-Y**[5]**A. S. Kalashnikov,*The Cauchy problem in a class of growing functions*, Vestnik Moskov. Univ. Ser. VI, Mat. Mekh.**6**(1963), 17. (Russian)**[6]**E. S. Sabinina,*On the Cauchy problem for the equation of nonstationary gas filtration in several space variables*, Soviet Math. Dokl.**2**(1961), 166–169. MR**0158190**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
35K55,
35K65,
76S05

Retrieve articles in all journals with MSC: 35K55, 35K65, 76S05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1994-1169025-2

Article copyright:
© Copyright 1994
American Mathematical Society