Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Weak $ (1,1)$ estimate for oscillatory singular integrals with real-analytic phases


Author: Yibiao Pan
Journal: Proc. Amer. Math. Soc. 120 (1994), 789-802
MSC: Primary 42B20; Secondary 47G10
DOI: https://doi.org/10.1090/S0002-9939-1994-1169044-6
MathSciNet review: 1169044
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we prove the uniform weak $ (1,\;1)$ estimate for oscillatory singular integral operators with real-analytic phase functions in the one-dimensional case. Some partial results for the higher-dimensional case is also included.


References [Enhancements On Off] (What's this?)

  • [1] S. Chanillo and M. Christ, Weak $ (1,\:1)$ bounds for oscillatory singular integrals, Duke Math. J. 55 (1987), 141-155. MR 883667 (88h:42015)
  • [2] S. Chanillo, D. Kurtz and G. Sampson, Weighted weak $ (1,\;1)$ and weighted $ {L^p}$ estimates for oscillatory kernels, Trans. Amer. Math. Soc. 295 (1986), 127-145. MR 831193 (87h:42020)
  • [3] M. Christ, Weak type $ (1,\;1)$ bounds for rough operators, Ann. of Math. (2) 128 (1988), 19-42. MR 951506 (89m:42013)
  • [4] C. Fefferman, Inequalities for strongly singular convolution operators, Acta Math. 124 (1970), 9-36. MR 0257819 (41:2468)
  • [5] R. Hardt, Slicing and intersection theory for chains associated with real analytic varieties, Acta Math. 129 (1972), 75-136. MR 0315561 (47:4110)
  • [6] A. Nagel and S. Wainger, Hilbert transforms associated with plane curves, Trans. Amer. Math. Soc. 223 (1976), 235-252. MR 0423010 (54:10994)
  • [7] Y. Pan, Uniform estimates for oscillatory integral operators, J. Funct. Anal. 100 (1991), 207-220. MR 1124299 (93f:42034)
  • [8] D. H. Phong and E. M. Stein, Hilbert integrals, singular integrals and Radon transforms, I, Acta Math. 157 (1986), 99-157. MR 857680 (88i:42028a)
  • [9] F. Ricci and E. J. Stein, Harmonic analysis on nilpotent groups and singular integral, I, J. Funct. Anal. 73 (1987), 179-194. MR 890662 (88g:42023)
  • [10] E. M. Stein, Oscillatory integrals in Fourier analysis, Beijing Lectures in Harmonic Analysis, Princeton Univ. Press, Princeton, NJ, 1986. MR 864375 (88g:42022)
  • [11] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, Princeton, NJ, 1971. MR 0304972 (46:4102)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42B20, 47G10

Retrieve articles in all journals with MSC: 42B20, 47G10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1169044-6
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society