Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Discrepancy of behavior of perturbed sequences in $ L\sp p$ spaces


Author: Karin Reinhold-Larsson
Journal: Proc. Amer. Math. Soc. 120 (1994), 865-874
MSC: Primary 28D05; Secondary 47A35
DOI: https://doi.org/10.1090/S0002-9939-1994-1169889-2
MathSciNet review: 1169889
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Given $ p \in [1,\infty )$, examples of sequences $ {\{ {n_k}\} _{k \subset \mathbb{N}}}$ such that for any ergodic dynamical system $ (X,\beta ,m,T)$ the averages

$\displaystyle {A_N}f(x) = \frac{1} {N}\sum\limits_{k = 1}^N {f({T^{{n_k}}}x)} $

converge almost everywhere in all $ {L^q}(X),\,q > p$, but fail to have a finite limit for some function in $ {L^p}(X)$ are shown. Also, sequences such that for all ergodic dynamical systems the averages $ {A_N}f(x)$ do not converge for some function $ f \in {L^p}(X)$ for all $ 1 \leqslant p < \infty $ but do converge for all functions in $ {L^\infty }(X)$ are shown.

References [Enhancements On Off] (What's this?)

  • [1] A. Bellow, Perturbations of a sequence, Adv. in Math. 78 (1989), 134-139. MR 1029097 (91f:28009)
  • [2] A. Bellow and V. Losert, On sequences of density zero in ergodic theory, Contemp. Math., vol. 26, Amer. Math. Soc., Providence, RI, 1984, pp. 49-60. MR 737387 (86c:28034)
  • [3] A. Bellow, R. Jones, and J. Rosenblatt, Convergence of moving averages, Ergodic Theory Dynamical Systems 10 (1990), 43-62. MR 1053798 (91g:28021)
  • [4] J. Bourgain, On the maximal ergodic theorem for certain subsets of the integers, Israel J. Math. 61 (1988), 39-72. MR 937581 (89f:28037a)
  • [5] -, On the pointwise ergodic theorem on $ {L^p}$ for arithmetic sets, Israel J. Math. 61 (1988), 73-84. MR 937582 (89f:28037b)
  • [6] J. P. Conze, Convergence des moyenes ergodiques pour des sous-suites, Bull. Soc. Math. France 35 (1973), 7-15. MR 0453975 (56:12226)
  • [7] W. Emerson, The pointwise ergodic theorem for amenable groups, Amer. J. Math. 96 (1974), 472-487. MR 0354926 (50:7403)
  • [8] A. Garsia, Topics in almost everywhere convergence, Lectures in Adv. Math., vol. 4, Markham, Chicago, 1970. MR 0261253 (41:5869)
  • [9] J. Rosenblatt, Universally bad sequences in ergodic theory, Proceedings of Conference in Almost Everywhere Convergence II (A. Bellow and R. Jones, ed.), Academic Press, New York, 1991, pp. 227-245. MR 1131794 (93a:28016)
  • [10] S. Sawyer, Maximal inequalities of weak type, Ann. of Math. (2) 84 (1966), 157-174. MR 0209867 (35:763)
  • [11] M. Wierdl, private communication.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 28D05, 47A35

Retrieve articles in all journals with MSC: 28D05, 47A35


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1169889-2
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society