Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Weights in cohomology groups arising from hyperplane arrangements


Author: Minhyong Kim
Journal: Proc. Amer. Math. Soc. 120 (1994), 697-703
MSC: Primary 14F20; Secondary 14C30, 52B30
DOI: https://doi.org/10.1090/S0002-9939-1994-1179589-0
MathSciNet review: 1179589
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The formalism of weights allows very simple analysis of the cohomology of hyperplane complements in a uniform fashion for different cohomology theories. An $ l$-adic analogue of Arnold's conjecture on the torsion-freeness of these cohomology groups is one of the consequences.


References [Enhancements On Off] (What's this?)

  • [1] P. Deligne, Théories de Hodge. I, Actes du Congrès International des Mathématiciens, Nice, vol. 1, 1970, pp. 425-430. MR 0441965 (56:356)
  • [2] -, Théories de Hodge. II, III, Inst. Hautes Études Sci. Publ. Math 40 (1972), 5-57; 44 (1975), 6-77.
  • [3] -, Poids dans la cohomologie des variétés algébriques, Proc. Internat. Congr. Math. (Vancouver), Canad. Math. Congress, vol. 1, 1974, pp. 79-85. MR 0432648 (55:5634)
  • [4] F. Elzein, Mixed Hodge structures, Trans. Amer. Math. Soc. 275 (1983), 71-106. MR 678337 (85g:14010)
  • [5] L. Illusie, Cohomologie de de Rham et cohomologie étale $ p$-adic, Astérisque 189-190 (1990 Canadian Math. Congress), 325-374. MR 1099881 (92e:11034)
  • [6] M. Kim, On Poincaré polynomials for hyperplane arrangements in positive characteristic, Comm. Algebra 21 (1993), 1337-1346. MR 1209932 (94a:52027)
  • [7] J. Milne, Étale cohomology, Princeton Univ. Press, Princeton, NJ, 1980. MR 559531 (81j:14002)
  • [8] P. Orlik and L. Solomon, Combinatorics and topology of complements of hyperplanes, Invent. Math. 56 (1980), 167-189. MR 558866 (81e:32015)
  • [9] P. Orlik and H. Terao, Arrangements of hyperplanes, Grundlehren Math. Wiss., vol. 300, Springer-Verlag, Berlin, Heidelberg, and New York, 1992. MR 1217488 (94e:52014)
  • [10] T. torn Dieck, Transformation groups, de Gruyter Verlag, Berlin and New York, 1987. MR 889050 (89c:57048)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 14F20, 14C30, 52B30

Retrieve articles in all journals with MSC: 14F20, 14C30, 52B30


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1179589-0
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society