Borel maps with the ``point of continuity property'' and completely Borel additive families in some nonmetrizable spaces
Author:
Petr Holický
Journal:
Proc. Amer. Math. Soc. 120 (1994), 951-958
MSC:
Primary 54H05; Secondary 28A05, 54A35
DOI:
https://doi.org/10.1090/S0002-9939-1994-1185280-7
MathSciNet review:
1185280
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: Under the axiom that no measurable cardinal exists it is proved that " -measurable" maps of a hereditarily Baire and Čech analytic (e.g., compact) space into a metric space has the point of continuity property. A result on completely Borel-additive families in Čech analytic spaces is the crucial part of the proof.
- [F1] Z. Frolík, Distinguished subclasses of Čech-analytic spaces, Comment. Math. Univ. Carolin. 25 (1984), 368-370.
- [F2] -, Refinements of perfect maps onto metric spaces and an application to Čech-analytic spaces, Topology Appl. 33 (1989), 77-84. MR 1020984 (91a:54011)
- [FH] Z. Frolík and P. Holický, Analytic and Luzin spaces (non-separable case), Topology Appl. 19 (1985), 129-156. MR 789594 (86m:54052)
- [H1] R. W. Hansell, First class functions with values in nonseparable spaces, Constantin Carathéodory: An International Tribute, Vols. I, II, World Sci. Publishing, Teaneck, NJ, 1991, pp. 461-475. MR 1130849 (93c:54014)
- [H2] -, Descriptive sets and the topology of nonseparable Banach spaces, preprint.
- [H3] -, Borel measurable mappings for nonseparable metric spaces, Trans. Amer. Math. Soc. 161 (1971), 145-169. MR 0288228 (44:5426)
- [Ho]
P. Holický, Čech analytic and almost
-descriptive spaces, Czechoslovak Math. J. (to appear). MR 1249614 (95e:54046)
- [JNR] J. E. Jayne, I. Namioka, and C. A. Rogers, Properties like the Radon-Nikodým property, preprint.
- [K] K. Kuratowski, Topology, vol. 1, PWN, Warsaw, 1966. MR 0217751 (36:840)
- [P] R. Pol, Remark on the restricted Baire property in compact spaces, Bull. Acad. Polon Sci. 24 (1976), 599-603. MR 0420580 (54:8594)
- [S] Z. Semadeni, Banach spaces of continuous functions, PWN, Warsaw, 1971.
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54H05, 28A05, 54A35
Retrieve articles in all journals with MSC: 54H05, 28A05, 54A35
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1994-1185280-7
Keywords:
Borel map,
point of continuity property,
scattered family,
relatively discrete family network,
completely Borel-additive family,
almost -descriptive spaces
-descriptive spaces
Article copyright:
© Copyright 1994
American Mathematical Society