Degree bounds for inverses of polynomial automorphisms

Authors:
Charles Ching-an Cheng, Stuart Sui Sheng Wang and Jie Tai Yu

Journal:
Proc. Amer. Math. Soc. **120** (1994), 705-707

MSC:
Primary 14E07

MathSciNet review:
1195715

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is known that if is a field and is a polynomial automorphism, then . We extend this result to the case where is a reduced ring. Furthermore, if is not a reduced ring, we show that for any integer and any integer there exists a polynomial automorphism such that .

**[1]**M. F. Atiyah and I. G. Macdonald,*Introduction to commutative algebra*, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR**0242802****[2]**Hyman Bass, Edwin H. Connell, and David Wright,*The Jacobian conjecture: reduction of degree and formal expansion of the inverse*, Bull. Amer. Math. Soc. (N.S.)**7**(1982), no. 2, 287–330. MR**663785**, 10.1090/S0273-0979-1982-15032-7**[3]**Stuart Sui Sheng Wang,*A Jacobian criterion for separability*, J. Algebra**65**(1980), no. 2, 453–494. MR**585736**, 10.1016/0021-8693(80)90233-1**[4]**Jie Tai Yu,*Degree bounds of minimal polynomials and polynomial automorphisms*, J. Pure Appl. Algebra**92**(1994), no. 2, 199–201. MR**1261127**, 10.1016/0022-4049(94)90025-6

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
14E07

Retrieve articles in all journals with MSC: 14E07

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1994-1195715-1

Keywords:
Automorphism,
degree,
inverse,
polynomial ring,
reduced ring,
nilpotent element,
nilradical

Article copyright:
© Copyright 1994
American Mathematical Society