Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the existence of positive solutions of ordinary differential equations


Authors: L. H. Erbe and Haiyan Wang
Journal: Proc. Amer. Math. Soc. 120 (1994), 743-748
MSC: Primary 34B15; Secondary 47N20
DOI: https://doi.org/10.1090/S0002-9939-1994-1204373-9
MathSciNet review: 1204373
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the existence of positive solutions of the equation $ {u^{''}} + a(t)f(u) = 0$ with linear boundary conditions. We show the existence of at least one positive solution if $ f$ is either superlinear or sublinear by a simple application of a Fixed Point Theorem in cones.


References [Enhancements On Off] (What's this?)

  • [1] C. Bandle, C. V. Coffman, and M. Marcus, Nonlinear elliptic problems in annular domains, J. Differential Equations 69 (1987), 322-345. MR 903391 (89a:35082)
  • [2] C. Bandle and M. K. Kwong, Semilinear elliptic problems in annular domains, J. Appl. Math. Phys. 40 (1989), 245-257. MR 990630 (90m:35062)
  • [3] C. V. Coffman and M. Marcus, Existence and uniqueness results for semilinear Dirichlet problems in Annuli, Arch. Rational Mech. Anal. 108 (1989), 293-307. MR 1013459 (90m:35064)
  • [4] K. Deimling, Nonlinear functional analysis, Springer, New York, 1985. MR 787404 (86j:47001)
  • [5] L. H. Erbe, Boundary value problems for ordinary differential equations, Rocky Mountain J. Math. 1 (1970), 709-729. MR 0287072 (44:4279)
  • [6] X. Garaizar, Existence of positive radial solutions for semilinear elliptic problems in the annulus, J. Differential Equations 70 (1987), 69-72. MR 904816 (89f:35019)
  • [7] G. B. Gustafson and K. Schmitt, Nonzero solutions of boundary value problems for second order ordinary and delay-differential equations, J. Differential Equations 12 (1972), 127-147. MR 0346234 (49:10959)
  • [8] Georges Iffland, Positive solutions of a problem of Emden-Fowler type with a free boundary, SIAM J. Math. Anal. 18 (1987), 283-292. MR 876271 (88c:34025)
  • [9] M. A. Krasnoselskii, Positive solutions of operator equations, Noordhoff, Groningen, 1964. MR 0181881 (31:6107)
  • [10] R. A. Moore and Z. Nehari, Nonoscillation theorems for a class of nonlinear differential equations, Trans. Amer. Math. Soc. 93 (1959), 30-52. MR 0111897 (22:2755)
  • [11] J. Santanilla, Nonnegative solutions to boundary value problems for nonlinear first and second order ordinary differential equations, J. Math. Anal. Appl. 126 (1987), 397-408. MR 900756 (88h:34014)
  • [12] Haiyan Wang, On the existence of positive solutions for semilinear elliptic equations in the annulus, J. Differential Equations (to appear). MR 1272398 (95c:35093)
  • [13] J. S. W. Wong, On the generalized Emden-Fowler equation, SIAM Rev. 17 (1975), 339-360. MR 0367368 (51:3610)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34B15, 47N20

Retrieve articles in all journals with MSC: 34B15, 47N20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1204373-9
Keywords: Boundary value problems, positive solution, superlinear and sublinear, fixed point theorem in cones
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society