A collaring theorem for codimension one manifolds
Authors:
Robert J. Daverman and Fred C. Tinsley
Journal:
Proc. Amer. Math. Soc. 120 (1994), 969972
MSC:
Primary 57N45; Secondary 57N35, 57N40, 57N70
MathSciNet review:
1205486
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: The chief result implies that an manifold embedded in the interior of an manifold as a closed, separating subset is locally flatly embedded if the embedding is well behaved in a locally peripheral sense and if has arbitrarily close neighborhoods such that the fundamental groups of appropriate components of admit a uniform finite upper bound on the number of generators.
 [B]
C.
E. Burgess, Criteria for a 2sphere in 𝑆³ to be tame
modulo two points, Michigan Math. J. 14 (1967),
321–330. MR 0216481
(35 #7314)
 [Ca]
J.
C. Cantrell, Almost locally flat embeddings of
𝑆ⁿ⁻¹ in 𝑆ⁿ, Bull. Amer. Math. Soc. 69 (1963), 716–718. MR 0154288
(27 #4237), http://dx.doi.org/10.1090/S000299041963109982
 [Ce]
A.
V. Černavskiĭ, The identity of local flatness and
local simple connectedness for imbeddings of (𝑛1)dimensional into
𝑛dimensional manifolds when 𝑛>4, Mat. Sb. (N.S.)
91(133) (1973), 279–286, 288 (Russian). MR 0334222
(48 #12541)
 [D1]
R.
J. Daverman, Nonhomeomorphic approximations of manifolds with
surfaces of bounded genus, Duke Math. J. 37 (1970),
619–625. MR 0267546
(42 #2448)
 [D2]
Robert
J. Daverman, Locally nice codimension one manifolds
are locally flat, Bull. Amer. Math. Soc. 79 (1973), 410–413.
MR
0321095 (47 #9628), http://dx.doi.org/10.1090/S000299041973131908
 [D3]
Robert
J. Daverman, Every crumpled 𝑛cube is a closed
𝑛cellcomplement, Michigan Math. J. 24
(1977), no. 2, 225–241. MR 0488066
(58 #7637)
 [D4]
R.
J. Daverman, Decompositions of manifolds into codimension one
submanifolds, Compositio Math. 55 (1985), no. 2,
185–207. MR
795714 (87b:57016)
 [D5]
Robert
J. Daverman, Each crumpled 4cube is a closed
4cellcomplement, Topology Appl. 26 (1987),
no. 2, 107–113. MR 896866
(88m:57024), http://dx.doi.org/10.1016/01668641(87)900617
 [DT1]
R.
J. Daverman and F.
C. Tinsley, Laminations, finitely generated perfect groups, and
acyclic maps, Michigan Math. J. 33 (1986),
no. 3, 343–351. MR 856526
(87k:57016), http://dx.doi.org/10.1307/mmj/1029003414
 [DT2]
R.
J. Daverman and F.
C. Tinsley, A controlled plus construction for
crumpled laminations, Trans. Amer. Math.
Soc. 342 (1994), no. 2, 807–826. MR 1182981
(94f:57020), http://dx.doi.org/10.1090/S00029947199411829816
 [FA]
Ralph
H. Fox and Emil
Artin, Some wild cells and spheres in threedimensional space,
Ann. of Math. (2) 49 (1948), 979–990. MR 0027512
(10,317g)
 [K]
Robion
C. Kirby, On the set of nonlocally flat points of a submanifold of
codimension one, Ann. of Math. (2) 88 (1968),
281–290. MR 0236900
(38 #5193)
 [M]
William
S. Massey, Algebraic topology: an introduction,
SpringerVerlag, New YorkHeidelberg, 1977. Reprint of the 1967 edition;
Graduate Texts in Mathematics, Vol. 56. MR 0448331
(56 #6638)
 [Q]
Frank
Quinn, Ends of maps. III. Dimensions 4 and 5, J. Differential
Geom. 17 (1982), no. 3, 503–521. MR 679069
(84j:57012)
 [B]
 C. E. Burgess, Criteria for a sphere in to be locally tame modulo two points, Michigan Math. J. 14 (1967), 321330. MR 0216481 (35:7314)
 [Ca]
 J. C. Cantrell, Almost locally flat embeddings of in , Bull. Amer. Math. Soc. 69 (1963), 716718. MR 0154288 (27:4237)
 [Ce]
 A. V. Cernavskii, Coincidence of local flatness and local simpleconnectedness for embeddings of dimensional manifolds in dimensional manifolds when , Math. USSR Sb. 91 (1973), 279296. MR 0334222 (48:12541)
 [D1]
 R. J. Daverman, Nonhomeomorphic approximation of manifolds with surfaces of bounded genus, Duke Math. J. 37 (1970), 619625. MR 0267546 (42:2448)
 [D2]
 , Locally nice codimension one decompositions are locally flat, Bull. Amer. Math. Soc. 79 (1973), 410413. MR 0321095 (47:9628)
 [D3]
 , Every crumpled cube is a closed cellcomplement, Michigan Math. J. 24 (1977), 225241. MR 0488066 (58:7637)
 [D4]
 , Decompositions into codimension one submanifolds, Compositio Math. 55 (1985), 185207. MR 795714 (87b:57016)
 [D5]
 , Every crumpled cube is a closed cellcomplement, Topology Appl. 26 (1987), 107113. MR 896866 (88m:57024)
 [DT1]
 R. J. Daverman and F. C. Tinsley, Laminations, finitely generated perfect groups, and acyclic mappings, Michigan Math. J. 33 (1986), 343351. MR 856526 (87k:57016)
 [DT2]
 , A controlled plus construction for crumpled laminations, Trans. Amer. Math. Soc. (to appear). MR 1182981 (94f:57020)
 [FA]
 R. H. Fox and E. Artin, Some wild cells and spheres in threedimensional space, Ann. of Math. (2) 49 (1948), 979990. MR 0027512 (10:317g)
 [K]
 R. C. Kirby, On the set of nonlocally flat points of a submanifold of codimension one, Ann. of Math. (2) 88 (1968), 281290. MR 0236900 (38:5193)
 [M]
 W. S. Massey, Algebraic topology: an introduction, SpringerVerlag, Berlin, 1977. MR 0448331 (56:6638)
 [Q]
 F. Quinn, Ends of maps, III: dimensions and , J. Differential Geom. 17 (1982), 503521. MR 679069 (84j:57012)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
57N45,
57N35,
57N40,
57N70
Retrieve articles in all journals
with MSC:
57N45,
57N35,
57N40,
57N70
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939199412054868
PII:
S 00029939(1994)12054868
Keywords:
Codimension one manifold,
locally flat embedding,
locally peripherally collared,
wild Cantor set,
open collar neighborhood
Article copyright:
© Copyright 1994
American Mathematical Society
