A collaring theorem for codimension one manifolds

Authors:
Robert J. Daverman and Fred C. Tinsley

Journal:
Proc. Amer. Math. Soc. **120** (1994), 969-972

MSC:
Primary 57N45; Secondary 57N35, 57N40, 57N70

MathSciNet review:
1205486

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The chief result implies that an -manifold embedded in the interior of an -manifold as a closed, separating subset is locally flatly embedded if the embedding is well behaved in a locally peripheral sense and if has arbitrarily close neighborhoods such that the fundamental groups of appropriate components of admit a uniform finite upper bound on the number of generators.

**[B]**C. E. Burgess,*Criteria for a 2-sphere in 𝑆³ to be tame modulo two points*, Michigan Math. J.**14**(1967), 321–330. MR**0216481****[Ca]**J. C. Cantrell,*Almost locally flat embeddings of 𝑆ⁿ⁻¹ in 𝑆ⁿ*, Bull. Amer. Math. Soc.**69**(1963), 716–718. MR**0154288**, 10.1090/S0002-9904-1963-10998-2**[Ce]**A. V. Černavskiĭ,*The identity of local flatness and local simple connectedness for imbeddings of (𝑛-1)-dimensional into 𝑛-dimensional manifolds when 𝑛>4*, Mat. Sb. (N.S.)**91(133)**(1973), 279–286, 288 (Russian). MR**0334222****[D1]**R. J. Daverman,*Non-homeomorphic approximations of manifolds with surfaces of bounded genus*, Duke Math. J.**37**(1970), 619–625. MR**0267546****[D2]**Robert J. Daverman,*Locally nice codimension one manifolds are locally flat*, Bull. Amer. Math. Soc.**79**(1973), 410–413. MR**0321095**, 10.1090/S0002-9904-1973-13190-8**[D3]**Robert J. Daverman,*Every crumpled 𝑛-cube is a closed 𝑛-cell-complement*, Michigan Math. J.**24**(1977), no. 2, 225–241. MR**0488066****[D4]**R. J. Daverman,*Decompositions of manifolds into codimension one submanifolds*, Compositio Math.**55**(1985), no. 2, 185–207. MR**795714****[D5]**Robert J. Daverman,*Each crumpled 4-cube is a closed 4-cell-complement*, Topology Appl.**26**(1987), no. 2, 107–113. MR**896866**, 10.1016/0166-8641(87)90061-7**[DT1]**R. J. Daverman and F. C. Tinsley,*Laminations, finitely generated perfect groups, and acyclic maps*, Michigan Math. J.**33**(1986), no. 3, 343–351. MR**856526**, 10.1307/mmj/1029003414**[DT2]**R. J. Daverman and F. C. Tinsley,*A controlled plus construction for crumpled laminations*, Trans. Amer. Math. Soc.**342**(1994), no. 2, 807–826. MR**1182981**, 10.1090/S0002-9947-1994-1182981-6**[FA]**Ralph H. Fox and Emil Artin,*Some wild cells and spheres in three-dimensional space*, Ann. of Math. (2)**49**(1948), 979–990. MR**0027512****[K]**Robion C. Kirby,*On the set of non-locally flat points of a submanifold of codimension one*, Ann. of Math. (2)**88**(1968), 281–290. MR**0236900****[M]**William S. Massey,*Algebraic topology: an introduction*, Springer-Verlag, New York-Heidelberg, 1977. Reprint of the 1967 edition; Graduate Texts in Mathematics, Vol. 56. MR**0448331****[Q]**Frank Quinn,*Ends of maps. III. Dimensions 4 and 5*, J. Differential Geom.**17**(1982), no. 3, 503–521. MR**679069**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
57N45,
57N35,
57N40,
57N70

Retrieve articles in all journals with MSC: 57N45, 57N35, 57N40, 57N70

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1994-1205486-8

Keywords:
Codimension one manifold,
locally flat embedding,
locally peripherally collared,
wild Cantor set,
open collar neighborhood

Article copyright:
© Copyright 1994
American Mathematical Society