Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A collaring theorem for codimension one manifolds


Authors: Robert J. Daverman and Fred C. Tinsley
Journal: Proc. Amer. Math. Soc. 120 (1994), 969-972
MSC: Primary 57N45; Secondary 57N35, 57N40, 57N70
DOI: https://doi.org/10.1090/S0002-9939-1994-1205486-8
MathSciNet review: 1205486
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The chief result implies that an $ n$-manifold $ S$ embedded in the interior of an $ (n + 1)$-manifold $ M$ as a closed, separating subset is locally flatly embedded if the embedding is well behaved in a locally peripheral sense and if $ S$ has arbitrarily close neighborhoods $ Q$ such that the fundamental groups of appropriate components of $ Q\backslash S$ admit a uniform finite upper bound on the number of generators.


References [Enhancements On Off] (What's this?)

  • [B] C. E. Burgess, Criteria for a $ 2$-sphere in $ {S^3}$ to be locally tame modulo two points, Michigan Math. J. 14 (1967), 321-330. MR 0216481 (35:7314)
  • [Ca] J. C. Cantrell, Almost locally flat embeddings of $ {S^{n - 1}}$ in $ {S^n}$, Bull. Amer. Math. Soc. 69 (1963), 716-718. MR 0154288 (27:4237)
  • [Ce] A. V. Cernavskii, Coincidence of local flatness and local simple-connectedness for embeddings of $ (n - 1)$-dimensional manifolds in $ n$-dimensional manifolds when $ n > 4$, Math. USSR Sb. 91 (1973), 279-296. MR 0334222 (48:12541)
  • [D1] R. J. Daverman, Non-homeomorphic approximation of manifolds with surfaces of bounded genus, Duke Math. J. 37 (1970), 619-625. MR 0267546 (42:2448)
  • [D2] -, Locally nice codimension one decompositions are locally flat, Bull. Amer. Math. Soc. 79 (1973), 410-413. MR 0321095 (47:9628)
  • [D3] -, Every crumpled $ n$-cube is a closed $ n$-cell-complement, Michigan Math. J. 24 (1977), 225-241. MR 0488066 (58:7637)
  • [D4] -, Decompositions into codimension one submanifolds, Compositio Math. 55 (1985), 185-207. MR 795714 (87b:57016)
  • [D5] -, Every crumpled $ 4$-cube is a closed $ 4$-cell-complement, Topology Appl. 26 (1987), 107-113. MR 896866 (88m:57024)
  • [DT1] R. J. Daverman and F. C. Tinsley, Laminations, finitely generated perfect groups, and acyclic mappings, Michigan Math. J. 33 (1986), 343-351. MR 856526 (87k:57016)
  • [DT2] -, A controlled plus construction for crumpled laminations, Trans. Amer. Math. Soc. (to appear). MR 1182981 (94f:57020)
  • [FA] R. H. Fox and E. Artin, Some wild cells and spheres in three-dimensional space, Ann. of Math. (2) 49 (1948), 979-990. MR 0027512 (10:317g)
  • [K] R. C. Kirby, On the set of non-locally flat points of a submanifold of codimension one, Ann. of Math. (2) 88 (1968), 281-290. MR 0236900 (38:5193)
  • [M] W. S. Massey, Algebraic topology: an introduction, Springer-Verlag, Berlin, 1977. MR 0448331 (56:6638)
  • [Q] F. Quinn, Ends of maps, III: dimensions $ 4$ and $ 5$, J. Differential Geom. 17 (1982), 503-521. MR 679069 (84j:57012)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57N45, 57N35, 57N40, 57N70

Retrieve articles in all journals with MSC: 57N45, 57N35, 57N40, 57N70


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1205486-8
Keywords: Codimension one manifold, locally flat embedding, locally peripherally collared, wild Cantor set, open collar neighborhood
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society