Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Maximal moment inequalities for stochastic processes
HTML articles powered by AMS MathViewer

by F. Móricz PDF
Proc. Amer. Math. Soc. 120 (1994), 943-950 Request permission

Abstract:

Let ${X_{a,b}}$ be nonnegative random variables with the property that ${X_{a,b}} \leqslant {X_{a,c}} + {X_{c,b}}$ for all $0 \leqslant a < c < b \leqslant T$, where $T > 0$ is fixed. We define ${M_{a,b}}: = \sup \{ {X_{a,c}}:a < c \leqslant b\}$ and establish bounds for $EM_{a,b}^\gamma$ and $E\exp (\lambda {M_{a,b}})$ in terms of assumed bounds for $EX_{a,b}^\gamma$ and $E\exp (\lambda {X_{a,b}})$, respectively, where $\gamma \geqslant 1$ and $\lambda$ runs through an interval $({\lambda _0},\infty )$ with fixed ${\lambda _0} \geqslant 0$. These bounds explicitly involve a nonnegative function $g(a,b)$ assumed to be quasi-superadditive with an index $Q$, which means that $g(a,c) + g(c,b) \leqslant Qg(a,b)$ for all $0 \leqslant a < c < b \leqslant T$, where $1 \leqslant Q < 2$ is fixed. Maximal inequalities obtained in this way can be applied to stochastic processes exhibiting long-range dependence. Among others, these applications may include certain self-similar processes such as fractional Brownian motion, stochastic processes occurring in linear time-series models, etc.
References
  • J. L. Doob, Stochastic processes, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1953. MR 0058896
  • László Gerencsér, On a class of mixing processes, Stochastics Stochastics Rep. 26 (1989), no. 3, 165–191. MR 1018543, DOI 10.1080/17442508908833555
  • E. J. Hannan, The asymptotic theory of linear time-series models, J. Appl. Probability 10 (1973), 130–145, corrections, ibid. 10 (1973), 913. MR 365960, DOI 10.1017/s0021900200042145
  • E. J. Hannan and Manfred Deistler, The statistical theory of linear systems, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1988. MR 940698
  • F. Móricz, Moment inequalities and the strong laws of large numbers, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 35 (1976), no. 4, 299–314. MR 407950, DOI 10.1007/BF00532956
  • F. Móricz, Probability inequalities of exponential type and laws of the iterated logarithm, Acta Sci. Math. (Szeged) 38 (1976), no. 3-4, 325–341. MR 433568
  • F. A. Móricz, R. J. Serfling, and W. F. Stout, Moment and probability bounds with quasisuperadditive structure for the maximum partial sum, Ann. Probab. 10 (1982), no. 4, 1032–1040. MR 672303, DOI 10.1214/aop/1176993724
  • Jorma Rissanen, Stochastic complexity in statistical inquiry, World Scientific Series in Computer Science, vol. 15, World Scientific Publishing Co., Inc., Teaneck, NJ, 1989. MR 1082556
  • S. Taqqu, Self-similar processes and related ultraviolet and infrared catastrophes, Random fields, Vol. I, II (Esztergom, 1979) Colloq. Math. Soc. János Bolyai, vol. 27, North-Holland, Amsterdam-New York, 1981, pp. 1057–1096. MR 712727
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC: 60E15, 60G60
  • Retrieve articles in all journals with MSC: 60E15, 60G60
Additional Information
  • © Copyright 1994 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 120 (1994), 943-950
  • MSC: Primary 60E15; Secondary 60G60
  • DOI: https://doi.org/10.1090/S0002-9939-1994-1216821-9
  • MathSciNet review: 1216821