Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The dynamics of the Sierpiński curve


Authors: Jan M. Aarts and Lex G. Oversteegen
Journal: Proc. Amer. Math. Soc. 120 (1994), 965-968
MSC: Primary 54H20; Secondary 34C35, 58F08
DOI: https://doi.org/10.1090/S0002-9939-1994-1217452-7
MathSciNet review: 1217452
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Sierpiński curve $ X$ admits a homeomorphism with a dense orbit. However, $ X$ is not minimal and does not admit an expansive homeomorphism.


References [Enhancements On Off] (What's this?)

  • [1] J. Banks, J. Brooks, G. Cairns, G. Davis, and P. Stacey, On Devaney's definition of chaos, Amer. Math. Monthly 99 (1992), 332-334. MR 1157223 (93d:54059)
  • [2] A. S. Besicovitch, A problem on topological transformations of the plane, Fund. Math. 28 (1937), 61-65.
  • [3] J. W. Cannon, A positional characterization of the $ (n - 1)$-dimensional Sierpiński curve in $ {S^n}\;(n \ne 4)$, Fund. Math. 79 (1973), 107-112. MR 0319203 (47:7748)
  • [4] Robert J. Daverman, Decompositions of manifolds, Academic Press, New York, 1986. MR 872468 (88a:57001)
  • [5] R. L. Devaney, An introduction to chaotic dynamical systems, Benjamin-Cummings, Menlo Park, CA, 1986. MR 811850 (87e:58142)
  • [6] James Dugundji, Topology, Allyn and Bacon, Boston, MA, 1966. MR 0193606 (33:1824)
  • [7] W. H. Gottschalk, Minimal sets: an introduction to topological dynamics, Bull. Amer. Math. Soc. 64 (1958), 336-351. MR 0100048 (20:6484)
  • [8] W. H. Gottschalk and G. A. Hedlund, Topological dynamics, Amer. Math. Soc. Colloq. Publ., vol. 36, Amer. Math. Soc., Providence, RI, 1955. MR 0074810 (17:650e)
  • [9] J. F. Jakobson and W. R. Utz, The nonexistence of expansive homeomorphisms of a closed $ 2$-cell, Pacific J. Math. 10 (1960), 1319-1321. MR 0117713 (22:8488)
  • [10] Hisiao Kato, Expansive homeomorphisms in continuum theory, Technical Report 13 (1991), Faculty of Integrated Arts and Sciences, Hiroshima Univ., Hiroshima 730, Japan.
  • [11] -, The nonexistence of expansive homeomorphisms of peano continua in the plane, Topology Appl. 34 (1990), 161-165. MR 1041770 (91b:54072)
  • [12] R. L. Moore, Concerning upper semicontinuous collections of compacta, Trans. Amer. Math. Soc. 27 (1925), 416-428. MR 1501320
  • [13] J. C. Oxtoby and S. M. Ulam, Measure preserving homeomorphisms and metrical transitivity, Ann. of Math. 42 (1941), 874-920. MR 0005803 (3:211b)
  • [14] G. T. Whyburn, Analytic topology, Amer. Math. Soc. Colloq. Publ., vol. 28, Amer. Math. Soc., Providence, RI, 1942. MR 0007095 (4:86b)
  • [15] -, Topological characterization of the Sierpiński curve, Fund. Math. 45 (1958), 320-324. MR 0099638 (20:6077)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54H20, 34C35, 58F08

Retrieve articles in all journals with MSC: 54H20, 34C35, 58F08


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1217452-7
Keywords: Chaos, minimal, transitive, dense orbit, expansive
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society