Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Existence of smooth invariant measures for geodesic flows of foliations of Riemannian manifolds


Author: PawełG. Walczak
Journal: Proc. Amer. Math. Soc. 120 (1994), 903-906
MSC: Primary 58F18; Secondary 57R30, 58F17
DOI: https://doi.org/10.1090/S0002-9939-1994-1227531-6
MathSciNet review: 1227531
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We construct a nontrivial smooth finite measure invariant under the geodesic flow of a foliation $ \mathcal{F}$ of a compact Riemannian manifold $ M$ assuming that the transverse mean curvature of $ \mathcal{F}$ is distributed "nicely" along some leaf geodesics.


References [Enhancements On Off] (What's this?)

  • [CN] C. Camacho and A. L. Neto, Geometric theory of foliations, Birkhäuser, Boston, 1985. MR 824240 (87a:57029)
  • [G] D. Gabai, Foliations and the topology of $ 3$-manifolds, J. Differential Geom. 18 (1983), 445-503; 26 (1987), 461-478, 479-536.
  • [K] W. Klingenberg, Riemannian geometry, Walter de Gruyter, Berlin and New York, 1982. MR 666697 (84j:53001)
  • [M] R. Mañe, Ergodic theory and differentiable dynamics, Springer-Verlag, Berlin, Heidelberg, and New York, 1987. MR 889254 (88c:58040)
  • [N] S. P. Novikov, Topology of foliations, Trudy Mosk. Mat. Obsch. 14 (1965), 248-278; English transl. in Trans. Moscow Math. Soc. MR 0200938 (34:824)
  • [OS] R. Osserman and P. Sarnak, A new curvature invariant and entropy of geodesic flows, Invent. Math. 77 (1984), 455-462. MR 759262 (86a:58054)
  • [P] Ya. B. Pesin, Lyapunov characteristic exponents and smooth ergodic theory, Uspekhi Mat. Nauk 32 (1977), 55-111; English transl. in Russian Math. Surveys. MR 0466791 (57:6667)
  • [R] W. Rudin, Real and complex analysis, McGraw-Hill, New York, 1986.
  • [W] P. G. Walczak, Dynamics of the geodesic flow of a foliation, Ergodic Theory Dynamical Systems 8 (1988), 637-650. MR 980802 (90g:58099)
  • [Wa] P. Walters, An introduction to ergodic theory, Springer-Verlag, Berlin, Heidelberg, and New York, 1982. MR 648108 (84e:28017)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 58F18, 57R30, 58F17

Retrieve articles in all journals with MSC: 58F18, 57R30, 58F17


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1227531-6
Keywords: Foliation, Riemannian manifold, geodesic flow, invariant measure, entropy
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society