COMPARISON OF THE LENGTHS OF THE CONTINUED FRACTIONS OF \sqrt{D} AND $\frac{1}{2}(1 + \sqrt{D})$

KENNETH S. WILLIAMS AND NICHOLAS BUCK

(Communicated by William Adams)

ABSTRACT. Let D denote a positive nonsquare integer such that $D \equiv 1 \pmod{4}$. Let $l(\sqrt{D})$ (resp. $l(\frac{1}{2}(1 + \sqrt{D}))$) denote the length of the period of the continued fraction expansion of \sqrt{D} (resp. $\frac{1}{2}(1 + \sqrt{D})$). Recently Ishii, Kaplan, and Williams (On Eisenstein's problem, Acta Arith. 54 (1990), 323–345) established inequalities between $l(\sqrt{D})$ and $l(\frac{1}{2}(1 + \sqrt{D}))$. In this note it is shown that these inequalities are best possible in a strong sense.

Throughout this note D denotes a positive nonsquare integer > 16 such that $D \equiv 1 \pmod{4}$. Let $l = l(\sqrt{D})$ (resp. $l' = l(\frac{1}{2}(1 + \sqrt{D}))$) denote the length of the period of the continued fraction expansion of \sqrt{D} (resp. $\frac{1}{2}(1 + \sqrt{D})$). In their work on Eisenstein’s problem, Ishii, Kaplan, and Williams [3] established a number of inequalities relating $l(\sqrt{D})$ and $l(\frac{1}{2}(1 + \sqrt{D}))$. These are summarized as Theorems A, B, and C.

Theorem A. If there exist odd integers T and U such that $T^2 - DU^2 = 4$ (so that $D \equiv 5 \pmod{8}$) then

$$l(\frac{1}{2}(1 + \sqrt{D})) + 4 \leq l(\sqrt{D}) \leq 5l(\frac{1}{2}(1 + \sqrt{D})).$$

Theorem B. If there do not exist odd integers T and U such that $T^2 - DU^2 = 4$ but there do exist integers V and W such that $V^2 - DW^2 = -1$ then

$$\frac{1}{3}l(\frac{1}{2}(1 + \sqrt{D})) \leq l(\sqrt{D}) \leq 3l(\frac{1}{2}(1 + \sqrt{D})) - 4.$$

Theorem C. If there do not exist odd integers T and U such that $T^2 - DU^2 = 4$ and there do not exist integers V and W such that $V^2 - DW^2 = -1$ then

$$\frac{1}{3}l(\frac{1}{2}(1 + \sqrt{D})) \leq l(\sqrt{D}) \leq 3l(\frac{1}{2}(1 + \sqrt{D})) - 8.$$

We show that all of the six inequalities in Theorems A, B, and C are best possible in a strong sense (see Theorems 1–6).

We begin by giving a few basic facts about the continued fractions of \sqrt{D} and $\frac{1}{2}(1 + \sqrt{D})$, all of which can be found, for example, in [6].
The continued fraction of \sqrt{D} is

$$\sqrt{D} = [a_0; a_1, a_2, \ldots, a_l], \quad l = l(\sqrt{D}),$$

where the positive integers a_i are given by

$$(2) \quad a_i = [a_i], \quad x_{i+1} = \frac{1}{x_i - a_i} \quad (i = 0, 1, 2, \ldots), \quad x_0 = \sqrt{D}.$$

Moreover, we have

$$(3) \quad x_i = (P_i + \sqrt{D})/Q_i \quad (i = 0, 1, 2, \ldots),$$

where the integers P_i and Q_i are given by

$$(4) \quad P_{i+1} = a_i Q_i - P_i, \quad Q_{i+1} = (D - P_{i+1}^2)/Q_i \quad (i = 0, 1, 2, \ldots),$$

$$(5) \quad P_0 = 0, \quad Q_0 = 1.$$

From (4) we deduce

$$(6) \quad Q_{i+1} = a_i(P_i - P_{i+1}) + Q_{i-1} \quad (i = 1, 2, \ldots).$$

The integers a_i, P_i, Q_i have the properties

$$(7) \quad a_0 = [\sqrt{D}], \quad a_{i-1} = a_i \quad (i = 1, 2, \ldots, l - 1), \quad a_l = 2a_0,$$

$$(8) \quad P_i = P_{i+1 - i} \quad (i = 1, 2, \ldots, l),$$

$$(9) \quad Q_i = Q_{i-1} \quad (i = 0, 1, 2, \ldots, l).$$

The equation $V^2 - DW^2 = -1$ is solvable in integers V and W if and only if $l = l(\sqrt{D})$ is odd, and the equation $T^2 - DU^2 = 4$ is solvable in odd integers T and U if and only if $Q_i = 4$ for some even integer i satisfying $0 < i < l$.

The continued fraction of $1/(1 + \sqrt{D})$ is

$$\frac{1}{1 + \sqrt{D}} = [b_0; b_1, b_2, \ldots, b_{l'}], \quad l' = l\left(\frac{1}{2}(1 + \sqrt{D})\right),$$

where the positive integers b_i are given by

$$(11) \quad b_i = [x'_i], \quad x'_{i+1} = \frac{1}{x'_i - b_i} \quad (i = 0, 1, 2, \ldots), \quad x'_0 = \frac{1}{2}(1 + \sqrt{D}).$$

Moreover, we have

$$(12) \quad x'_i = (P'_i + \sqrt{D})/Q'_i, \quad (i = 0, 1, 2, \ldots),$$

where the integers P'_i and Q'_i are given by

$$(13) \quad P'_{i+1} = b_i Q'_i - P'_i, \quad Q'_{i+1} = (D - P'_{i+1}^2)/Q'_i \quad (i = 0, 1, 2, \ldots),$$

$$(14) \quad P'_0 = 1, \quad Q'_0 = 2.$$

From (13) we deduce

$$(15) \quad Q'_{i+1} = b_i(P'_i - P'_{i+1}) + Q'_{i-1} \quad (i = 1, 2, \ldots).$$

The integers b_i, P'_i, Q'_i have the properties

$$(16) \quad b_0 = \left[\frac{1}{2}(1 + \sqrt{D})\right], \quad b_{i-1} = b_i \quad (i = 1, 2, \ldots, l' - 1), \quad b_{l'} = 2b_0 - 1,$$

$$(17) \quad P'_i = P'_{i+1 - i} \quad (i = 1, 2, \ldots, l'),$$

$$(18) \quad Q'_i = Q'_{i-1} \quad (i = 0, 1, \ldots, l').$$

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
We are now ready to prove Theorems 1–6. All of the families of \(D \) used in the proofs of Theorems 1–6 were suggested on the basis of numerical evidence found by the second author by means of an extensive computer search. Some (but not all) of the continued fractions expansions of \(\sqrt{D} \) and \(\frac{1}{2}(1 + \sqrt{D}) \) for these families of \(D \) were located in the literature.

Theorem 1. There exist infinitely many nonsquare positive integers \(D \equiv 1 \) (mod 4) such that:

(i) \(l\left(\frac{1}{2}(1 + \sqrt{D})\right) + 4 = l(\sqrt{D}) \),

(ii) \(T^2 - DU^2 = 4 \) is solvable in odd integers \(T \) and \(U \),

(iii) \(l(\sqrt{D}) \) is unbounded.

Proof. We let \(F_n \) denote the \(n \)th Fibonacci number so that

\[
F_0 = 0, \quad F_1 = 1, \quad F_2 = 1, \quad F_3 = 2, \quad F_4 = 3, \quad F_5 = 5, \quad F_6 = 8, \ldots
\]

and generally

\[
F_n = F_{n-1} + F_{n-2} \quad (n = 2, 3, \ldots).
\]

We choose

\[
D = (2F_{6n+1} + 1)^2 + (SF_{6n} + 4) \quad (n = 1, 2, \ldots).
\]

As

\[
F_n \equiv \begin{cases} 0 \pmod{2} & \text{if } n \equiv 0 \pmod{3}, \\ 1 \pmod{2} & \text{if } n \not\equiv 0 \pmod{3}, \end{cases}
\]

we see that \(D \equiv 5 \) (mod 8) so that \(D \) is not a square.

By a straightforward induction argument, we find, making use of the identity

\[
F_{r+t}F_s - F_{r}F_{s+t} = (-1)^{r-s}F_tF_{r-s} \quad (r \geq s \geq 0, \; t \geq 0),
\]

the continued fraction expansions of \(\sqrt{D} \) and \(\frac{1}{2}(1 + \sqrt{D}) \) given in Tables 1 and 2 on the next page.

Thus \(l(\sqrt{D}) = 6n+5 \) and \(l\left(\frac{1}{2}(1 + \sqrt{D})\right) = 6n+1 \) so that \(l\left(\frac{1}{2}(1 + \sqrt{D})\right) + 4 = l(\sqrt{D}) \) and \(l(\sqrt{D}) \) is unbounded. The equation \(T^2 - DU^2 = 4 \) is solvable in odd integers \(T \) and \(U \) as \(Q_{4n+4} = 4 \). As far as the authors are aware this is the first example of a continued fraction expansion of \(\sqrt{D} \) or \(\frac{1}{2}(1 + \sqrt{D}) \), where \(D \) involves the Fibonacci numbers \(F_n \) and their squares. Presumably the \(D \)'s used here are a special case of an infinite family of \(D \)'s involving Fibonacci numbers for which the continued fractions of \(\sqrt{D} \) and \(\frac{1}{2}(1 + \sqrt{D}) \) can be given explicitly.

Theorem 2. There exist infinitely many nonsquare positive integers \(D \equiv 1 \) (mod 4) such that:

(i) \(l(\sqrt{D}) = 5l\left(\frac{1}{2}(1 + \sqrt{D})\right) \),

(ii) \(T^2 - DU^2 = 4 \) is solvable in odd integers \(T \) and \(U \),

(iii) \(l(\sqrt{D}) \) is unbounded.

Proof. We take

\[
D = 16.5^{2n} + 12.5^n + 1 \quad (n = 1, 2, 3, \ldots).
\]

Clearly \(D \equiv 5 \) (mod 8) so that \(D \) is not a square. The continued fraction expansion of \(\sqrt{D} \) was considered by Williams [7, Table 4(A) with \(q = 4 \),...
Table 1. Continued fraction expansion of \sqrt{D}: $D = (2F_{6n+1} + 1)^2 + (8F_{6n} + 4)$ $(n \geq 1)$

<table>
<thead>
<tr>
<th>t</th>
<th>P_t</th>
<th>Q_t</th>
<th>a_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(1 \leq k \leq n)$</td>
<td>$4F_{3k}F_{6n-3k+1}$</td>
<td>$-2(-1)^kF_{6n-6k+1} + 2$</td>
<td>$2F_{3k}F_{6n-3k+1} + 1$</td>
</tr>
<tr>
<td>$2n$</td>
<td></td>
<td></td>
<td>$4F_{6n} - 2F_{6n-1} + 2$</td>
</tr>
<tr>
<td>$2n + 1$</td>
<td></td>
<td></td>
<td>$2F_{6n+1} + 1$</td>
</tr>
<tr>
<td>$2n + 2$</td>
<td></td>
<td></td>
<td>$2F_{6n+1} - 1$</td>
</tr>
<tr>
<td>$2n + k + 2$</td>
<td>$4F_{3k-1}F_{6n-3k+2}$</td>
<td>$+2(-1)^kF_{6n-6k+3} + 2$</td>
<td>$2F_{3k-1}F_{6n-3k+2} + 1$</td>
</tr>
<tr>
<td>$(n + 1 \leq k \leq 2n - 1)$</td>
<td>$4n + 3$</td>
<td>$2F_{6n+2} + 1$</td>
<td></td>
</tr>
<tr>
<td>$2n + k + 2$</td>
<td>$4n + 4$</td>
<td>$2F_{6n+1} - 1$</td>
<td></td>
</tr>
<tr>
<td>$(n + 1 \leq k \leq 2n)$</td>
<td>$4n + 5$</td>
<td>$2F_{6n+1} + 1$</td>
<td></td>
</tr>
<tr>
<td>$4n + k + 6$</td>
<td>$4F_{3k+1}F_{6n-3k-2}$</td>
<td>$-2(-1)^kF_{6n-6k+3} + 2$</td>
<td>$2F_{3k+1}F_{6n-3k-2} + 1$</td>
</tr>
<tr>
<td>$(0 \leq k \leq n - 1)$</td>
<td>$4n + 6$</td>
<td>$2F_{6n+2} + 1$</td>
<td></td>
</tr>
<tr>
<td>$4n + k + 6$</td>
<td>$4n + 7$</td>
<td>$2F_{6n+1} - 1$</td>
<td></td>
</tr>
<tr>
<td>$(n \leq k \leq 2n - 2)$</td>
<td>$6n + 5$</td>
<td>$2F_{6n+1} + 2$</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Continued fraction expansion of $\frac{1}{2}(1 + \sqrt{D})$: $D = (2F_{6n+1} + 1)^2 + 8F_{6n} + 4$ $(n \geq 1)$

<table>
<thead>
<tr>
<th>t</th>
<th>P'_t</th>
<th>Q'_t</th>
<th>b_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(1 \leq k \leq 6n)$</td>
<td>$1 + 2F_{6n+1}$</td>
<td>$-4F_{k-1}F_{6n-k+1}$</td>
<td>$2 + 4F_kF_{6n-k+1}$</td>
</tr>
<tr>
<td>$6n + 1$</td>
<td>$2F_{6n+1} + 1$</td>
<td>2</td>
<td>$2F_{6n+1} + 1$</td>
</tr>
</tbody>
</table>

$k = 1, A = 5$] and that of $\frac{1}{2}(1 + \sqrt{D})$ by deMille [1, p. 32, Table with $q = 4$, $k = 1, A = 5$]. From these tables we have

$$l(\sqrt{D}) = 10n + 5, \quad l\left(\frac{1}{2}(1 + \sqrt{D})\right) = 2n + 1,$$

so (i) and (iii) hold. In addition, $Q_{8n+4} = 4$, so (ii) holds.

Theorem 3. There exist infinitely many nonsquare positive integers $D \equiv 1$ (mod 4) such that:

(i) $\frac{1}{2}l\left(\frac{1}{2}(1 + \sqrt{D})\right) = l(\sqrt{D})$.

(ii) $T^2 - DU^2 = 4$ has no solution in odd integers T and U.

(iii) $V^2 - DW^2 = -1$ is solvable in integers V and W.

(iv) $l(\sqrt{D})$ is unbounded.

Proof. We take

$$D = 4.17^{2n} + 9.17^n + 4 \quad (n = 1, 2, 3, \ldots).$$

Clearly $D \equiv 1$ (mod 8). Further $D \equiv 2$ (mod 3), so D is not a square. The continued fraction expansion of \sqrt{D} was treated by Williams [7, Table 2 with
\(q = k = 2, A = 17 \) and that of \(\frac{1}{2}(1 + \sqrt{D}) \) by deMille [1, p. 21, Table with \(q = k = 2, A = 17 \)]. From these tables we have

\[
\ell(\sqrt{D}) = 2n + 1, \quad \ell\left(\frac{1}{2}(1 + \sqrt{D})\right) = 6n + 3,
\]
so (i) and (iv) hold. Also

\[
Q_{2k+1} = 17^{n-k} \quad (0 \leq k \leq n-1), \quad Q_{2k+2} = 17^{k+1} \quad (0 \leq k \leq n-1),
\]
so \(Q_i \neq 4 \) \((i = 1, 2, \ldots, 2n)\), which show that (ii) holds. As \(\ell(\sqrt{D}) \) is odd, the equation \(V^2 - DW^2 = -1 \) is solvable.

Theorem 4. There exist infinitely many nonsquare integers \(D \equiv 1 \pmod{4} \) for which:

(i) \(\ell(\sqrt{D}) = 3\ell\left(\frac{1}{2}(1 + \sqrt{D})\right) - 4 \),

(ii) \(T^2 - DU^2 = 4 \) has no solutions in odd integers \(T \) and \(U \),

(iii) \(V^2 - DW^2 = -1 \) is solvable in integers \(V \) and \(W \),

(iv) \(\ell(\sqrt{D}) \) is unbounded.

Proof. We take

\[
D = 9.4^{2n} + 10.4^n + 1 \quad (n = 1, 2, \ldots).
\]

Clearly \(D \equiv 1 \pmod{4} \). Also \(D \equiv 2 \pmod{3} \), so \(D \) is not a square. The continued fraction expansion of \(\sqrt{D} \) was treated by Williams [7, Table 4(A) with \(q = 3, k = 1, A = 4 \)] and that of \(\frac{1}{2}(1 + \sqrt{D}) \) by deMille [1, p. 32, Table with \(q = 3, k = 1, A = 4 \)]. From these tables we see that

\[
\ell(\sqrt{D}) = 6n - 1, \quad \ell\left(\frac{1}{2}(1 + \sqrt{D})\right) = 2n + 1,
\]
so (i) and (iv) hold. As \(\ell(\sqrt{D}) \) is odd, (iii) holds. Finally, as

\[
Q_1 = 4^{n+1}, \quad Q_{6k+2} = 3.4^n - 4^{n-k} + 4^{k+1} - 1 \quad (0 \leq k \leq n-1),
\]
\[
Q_{6k+3} = 3.4^n + 4^{n-k} - 4^{k+1} - 1 \quad (0 \leq k \leq n-1),
\]
\[
Q_{6k+4} = 4^{k+2} \quad (0 \leq k \leq n-2),
\]
\[
Q_{6k+5} = 3.4^n + 4^{n-k-1} - 4^{k+1} + 1 \quad (0 \leq k \leq n-2),
\]
\[
Q_{6k+6} = 3.4^n - 4^{n-k-1} + 4^{k+1} + 1 \quad (0 \leq k \leq n-2),
\]
\[
Q_{6k+7} = 4^{n-k} \quad (0 \leq k \leq n-2), \quad Q_{6n-2} = 4^{n+1},
\]
we see that \(Q_i \neq 4 \) \((1 \leq i \leq 6n-2)\), so that (ii) holds.

Theorem 5. There exist infinitely many nonsquare integers \(D \equiv 1 \pmod{4} \) for which

(i) \(\frac{1}{2}\ell\left(\frac{1}{2}(1 + \sqrt{D})\right) = \ell(\sqrt{D}) \),

(ii) \(T^2 - DU^2 = 4 \) has no solutions in odd integers \(T \) and \(U \),

(iii) \(V^2 - DW^2 = -1 \) has no solutions in integers \(V \) and \(W \),

(iv) \(\ell(\sqrt{D}) \) is unbounded.

Proof. We take

\[
D = 225.61^{2n} + 155.61^n + 25 \quad (n = 1, 2, \ldots).
\]

Clearly \(D \equiv 1 \pmod{4} \). Also \(D \equiv 0 \pmod{5} \), \(D \not\equiv 0 \pmod{5^2} \), so \(D \) is a nonsquare integer. The continued fraction expansions of \(\sqrt{D} \) and \(\frac{1}{2}(1 + \sqrt{D}) \) are given in Tables 3 and 4.
Table 3. Continued fraction expansion of \sqrt{D}: $D = 225.61^{2n} + 155.61^n + 25$ ($n \geq 1$)

<table>
<thead>
<tr>
<th>t</th>
<th>P_t</th>
<th>Q_t</th>
<th>a_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>$15.61^n + 5$</td>
</tr>
<tr>
<td>$2k + 1$ ($0 \leq k \leq n - 1$)</td>
<td>$15.61^n + 5$</td>
<td>5.61^{n-k}</td>
<td>6.61^k</td>
</tr>
<tr>
<td>$2k + 2$ ($0 \leq k \leq n - 1$)</td>
<td>$15.61^n - 5$</td>
<td>61^{k+1}</td>
<td>30.61^{n-k-1}</td>
</tr>
<tr>
<td>$2n + 1$</td>
<td>$15.61^n + 5$</td>
<td>5</td>
<td>$6.61^n + 2$</td>
</tr>
<tr>
<td>$2n + 2k + 2$ ($0 \leq k \leq n - 1$)</td>
<td>$15.61^n + 5$</td>
<td>61^{-k}</td>
<td>30.61^k</td>
</tr>
<tr>
<td>$2n + 2k + 3$ ($0 \leq k \leq n - 1$)</td>
<td>$15.61^n - 5$</td>
<td>5.61^{k+1}</td>
<td>6.61^{n-k-1}</td>
</tr>
<tr>
<td>$4n + 2$</td>
<td>$15.61^n + 5$</td>
<td>1</td>
<td>$30.61^n + 10$</td>
</tr>
</tbody>
</table>

Note. This table is the special case $\lambda = \mu = \tau = 1$, $l = 3$, $q = c = 5$, $p = 61$ of [2, §4.2].

Table 4. Continued fraction expansion of $\frac{1}{2}(1 + \sqrt{D})$: $D = 225.61^{2n} + 155.61^n + 25$ ($n \geq 1$)

<table>
<thead>
<tr>
<th>t</th>
<th>P'_t</th>
<th>Q'_t</th>
<th>b_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>$\frac{1}{2}(15.61^n + 5)$</td>
</tr>
<tr>
<td>$6k + 1$ ($0 \leq k \leq n$)</td>
<td>$15.61^n - 61^{-k} + 5$</td>
<td>$15.61^n + \frac{1}{2}(5.61^{n-k} - 61^{-k}) + 5$</td>
<td>1</td>
</tr>
<tr>
<td>$6k + 2$ ($0 \leq k \leq n$)</td>
<td>$\frac{1}{2}(61^{k+1} + 5.61^{n-k})$</td>
<td>$15.61^n - \frac{1}{2}(5.61^{n-k} - 61^{-k}) + 5$</td>
<td>1</td>
</tr>
<tr>
<td>$6k + 3$ ($0 \leq k \leq n - 1$)</td>
<td>$15.61^n - 5.61^{-n-k} + 5$</td>
<td>10.61^{n-k}</td>
<td>$3.61^k - 1$</td>
</tr>
<tr>
<td>$6k + 4$ ($0 \leq k \leq n - 1$)</td>
<td>$15.61^n - 5.61^{-n-k} - 5$</td>
<td>$15.61^n - \frac{1}{2}(5.61^{n-k} - 61^{k+1}) - 5$</td>
<td>1</td>
</tr>
<tr>
<td>$6k + 5$ ($0 \leq k \leq n - 1$)</td>
<td>$\frac{1}{2}(61^{k+1} + 5.61^{n-k})$</td>
<td>$15.61^n + \frac{1}{2}(5.61^{n-k} - 61^{k+1}) - 5$</td>
<td>1</td>
</tr>
<tr>
<td>$6k + 6$ ($0 \leq k \leq n - 1$)</td>
<td>$15.61^n - 61^{k+1} - 5$</td>
<td>2.61^{k+1}</td>
<td>$15.61^{n-k-1} - 1$</td>
</tr>
<tr>
<td>$6n + 3$</td>
<td>15.61^n</td>
<td>10</td>
<td>3.61^n</td>
</tr>
<tr>
<td>$6n + 6k + 4$ ($0 \leq k \leq n$)</td>
<td>$15.61^n - 5.61^{-k} + 5$</td>
<td>$15.61^n - \frac{1}{2}(5.61^k - 61^{n-k}) + 5$</td>
<td>1</td>
</tr>
<tr>
<td>$6n + 6k + 5$ ($0 \leq k \leq n$)</td>
<td>$\frac{1}{2}(61^{-k} + 5.61^k)$</td>
<td>$15.61^n + \frac{1}{2}(5.61^k - 61^{n-k}) + 5$</td>
<td>1</td>
</tr>
<tr>
<td>$6n + 6k + 6$ ($0 \leq k \leq n - 1$)</td>
<td>$15.61^n - 5.61^{-k} + 5$</td>
<td>2.61^{-k}</td>
<td>$15.61^k - 1$</td>
</tr>
<tr>
<td>$6n + 6k + 7$ ($0 \leq k \leq n - 1$)</td>
<td>$15.61^n - 5.61^{-k} - 5$</td>
<td>$15.61^n + \frac{1}{2}(5.61^{k+1} - 61^{-k}) - 5$</td>
<td>1</td>
</tr>
<tr>
<td>$6n + 6k + 8$ ($0 \leq k \leq n - 1$)</td>
<td>$\frac{1}{2}(61^{-k} + 5.61^{k+1})$</td>
<td>$15.61^n - \frac{1}{2}(5.61^{k+1} - 61^{-k}) - 5$</td>
<td>1</td>
</tr>
<tr>
<td>$6n + 6k + 9$ ($0 \leq k \leq n - 1$)</td>
<td>$15.61^n - 5.61^{k+1} - 5$</td>
<td>10.61^{k+1}</td>
<td>$3.61^{n-k-1} - 1$</td>
</tr>
<tr>
<td>$12n + 6$</td>
<td>$15.61^n + 4$</td>
<td>2</td>
<td>$15.61^n + 4$</td>
</tr>
</tbody>
</table>

Note. This table is not included in either [1] or [2]. Presumably there is an infinite family of D's for which the continued fraction expansion of $\frac{1}{2}(1 + \sqrt{D})$ has a similar structure.
Table 5. Continued fraction expansion of $\sqrt{D}: D = 81.10^{2n} + 66.10^n + 9 \quad (n \geq 1)$

<table>
<thead>
<tr>
<th>t</th>
<th>P_t</th>
<th>Q_t</th>
<th>a_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>9.10^n + 3</td>
</tr>
<tr>
<td>1</td>
<td>9.10^n + 3</td>
<td>12.10^n</td>
<td>1</td>
</tr>
<tr>
<td>$6k + 2$ $(0 \leq k \leq n - 1)$</td>
<td>$9.10^n - 6.10^{n-k} - 3$</td>
<td>$9.10^n - 3.10^{n-k} + 10^{k+1} - 3$</td>
<td>1</td>
</tr>
<tr>
<td>$6k + 3$ $(0 \leq k \leq n - 1)$</td>
<td>$3.10^{n-k} + 10^{k+1}$</td>
<td>$9.10^n + 3.10^{n-k} - 10^{k+1} - 3$</td>
<td>1</td>
</tr>
<tr>
<td>$6k + 4$ $(0 \leq k \leq n - 2)$</td>
<td>$9.10^n - 2.10^{k+1} - 3$</td>
<td>4.10^{k+1}</td>
<td>$45.10^{n-k-2} - 1$</td>
</tr>
<tr>
<td>$6k + 5$ $(0 \leq k \leq n - 2)$</td>
<td>$9.10^n - 2.10^{k+1} + 3$</td>
<td>$9.10^n + 3.10^{n-k} - 10^{k+1} + 3$</td>
<td>1</td>
</tr>
<tr>
<td>$6k + 6$ $(0 \leq k \leq n - 2)$</td>
<td>$3.10^{n-k-1} + 10^{k+1}$</td>
<td>$9.10^n - 3.10^{n-k-1} + 10^{k+1} + 3$</td>
<td>1</td>
</tr>
<tr>
<td>$6k + 7$ $(0 \leq k \leq n - 2)$</td>
<td>$9.10^n - 6.10^{n-k-1} + 3$</td>
<td>12.10^{n-k-1}</td>
<td>$15.10^k - 1$</td>
</tr>
<tr>
<td>$6n - 2$</td>
<td>$7.10^n - 3$</td>
<td>4.10^n</td>
<td>4</td>
</tr>
<tr>
<td>$6n - 1$</td>
<td>$9.10^n + 3$</td>
<td>3</td>
<td>$6.10^n + 2$</td>
</tr>
<tr>
<td>$6n$</td>
<td>$9.10^n + 3$</td>
<td>4.10^n</td>
<td>4</td>
</tr>
<tr>
<td>$6n + 6k + 1$ $(0 \leq k \leq n - 1)$</td>
<td>$9.10^n - 2.10^{n-k} - 3$</td>
<td>$9.10^n + 3.10^{k+1} - 10^{n-k} - 3$</td>
<td>1</td>
</tr>
<tr>
<td>$6n + 6k + 2$ $(0 \leq k \leq n - 1)$</td>
<td>$3.10^{k+1} + 10^{n-k}$</td>
<td>$9.10^n - 3.10^{k+1} + 10^{n-k} - 3$</td>
<td>1</td>
</tr>
<tr>
<td>$6n + 6k + 3$ $(0 \leq k \leq n - 2)$</td>
<td>$9.10^n - 6.10^{k+1} - 3$</td>
<td>12.10^{k+1}</td>
<td>$15.10^{n-k-2} - 1$</td>
</tr>
<tr>
<td>$6n + 6k + 4$ $(0 \leq k \leq n - 2)$</td>
<td>$9.10^n - 6.10^{k+1} + 3$</td>
<td>$9.10^n - 3.10^{k+1} + 10^{n-k-1} + 3$</td>
<td>1</td>
</tr>
<tr>
<td>$6n + 6k + 6$ $(0 \leq k \leq n - 2)$</td>
<td>$3.10^{k+1} + 10^{n-k-1}$</td>
<td>$9.10^n + 3.10^{k+1} - 10^{n-k-1} + 3$</td>
<td>1</td>
</tr>
<tr>
<td>$6n + 6k + 6$ $(0 \leq k \leq n - 2)$</td>
<td>$9.10^n - 2.10^{n-k-1} + 3$</td>
<td>4.10^{n-k-1}</td>
<td>$45.10^k - 1$</td>
</tr>
<tr>
<td>$12n - 3$</td>
<td>$3.10^n - 3$</td>
<td>12.10^n</td>
<td>1</td>
</tr>
<tr>
<td>$12n - 2$</td>
<td>$9.10^n + 3$</td>
<td>1</td>
<td>$18.10^n + 6$</td>
</tr>
</tbody>
</table>

Note. This table is not a special case of any of the continued fraction expansions considered in [2, 4, 5, 7].

Table 6. Continued fraction expansion of $\frac{1}{2}(1 + \sqrt{D}): D = 81.10^{2n} + 66.10^n + 9 \quad (n \geq 1)$

<table>
<thead>
<tr>
<th>t</th>
<th>P'_t</th>
<th>Q'_t</th>
<th>b_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>$\frac{1}{2}(9.10^n + 4)$</td>
</tr>
<tr>
<td>$2k + 1$ $(0 \leq k \leq n - 1)$</td>
<td>$9.10^n + 3$</td>
<td>$6.10^n - k$</td>
<td>3.10^k</td>
</tr>
<tr>
<td>$2k + 2$ $(0 \leq k \leq n - 1)$</td>
<td>$9.10^n - 3$</td>
<td>2.10^{k+1}</td>
<td>$9.10^n - k - 1$</td>
</tr>
<tr>
<td>$2n + 1$</td>
<td>$9.10^n + 3$</td>
<td>6</td>
<td>$3.10^n + 1$</td>
</tr>
<tr>
<td>$2n + 2k + 2$ $(0 \leq k \leq n - 1)$</td>
<td>$9.10^n + 3$</td>
<td>$2.10^n - k$</td>
<td>9.10^k</td>
</tr>
<tr>
<td>$2n + 2k + 3$ $(0 \leq k \leq n - 1)$</td>
<td>$9.10^n - 3$</td>
<td>6.10^{k+1}</td>
<td>$3.10^n - k - 1$</td>
</tr>
<tr>
<td>$4n + 2$</td>
<td>$9.10^n + 3$</td>
<td>2</td>
<td>$9.10^n + 3$</td>
</tr>
</tbody>
</table>

Note. This table is the special case $\lambda = \mu = 1$, $p = 10$, $c = l = q = 3$ of [2, §4.1].
We have

\[l(\sqrt{D}) = 4n + 2, \quad l(\frac{1}{2}(1 + \sqrt{D})) = 12n + 6, \]

so (i) and (iv) hold. As \(l(\sqrt{D}) \) is even, (iii) holds. It is also clear that \(Q_t \neq 4 \) \((t = 1, 2, \ldots, 4n + 1)\), so (ii) holds.

Theorem 6. There exist infinitely many nonsquare positive integers \(D \equiv 1 \pmod{4} \) such that:

(i) \(l(\sqrt{D}) = 3l(\frac{1}{2}(1 + \sqrt{D})) - 8 \),
(ii) \(T^2 - DU^2 = 4 \) is not solvable in odd integers \(T \) and \(U \),
(iii) \(V^2 - DW^2 = -1 \) is not solvable in integers \(V \) and \(W \),
(iv) \(l(\sqrt{D}) \) is unbounded.

Proof. We take

\[D = 81.10^{2n} + 66.10^n + 9 \quad (n = 1, 2, 3, \ldots). \]

Clearly \(D \equiv 1 \pmod{8} \). Further \(D \equiv 0 \pmod{3}, \ D \not\equiv 0 \pmod{3^2}, \) so \(D \) is not a square. The continued fraction expansions of \(\sqrt{D} \) and \(\frac{1}{2}(1 + \sqrt{D}) \) are given in Tables 5 and 6. We have

\[l(\sqrt{D}) = 12n - 2, \quad l(\frac{1}{2}(1 + \sqrt{D})) = 4n + 2, \]

so (i) and (iv) hold. Further, as \(l(\sqrt{D}) \) is even, (iii) holds. Finally we note that \(Q_t \neq 4, \ (1 \leq t \leq 12n - 3), \) so \(T^2 - DU^2 = 4 \) is not solvable in odd integers \(T \) and \(U \).

References

1. I. G. deMille, *The continued fraction for certain (1 + \sqrt{D})/2 with applications to units and classnumbers*, M. Sc. thesis (Supervisor Dr. K. S. Williams), Carleton University, Ottawa, Ontario, Canada, 1988.

Department of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada K1S 5B6

E-mail address: williams@ccs.carleton.ca

Department of Mathematics, College of New Caledonia, Prince George, British Columbia, Canada V2N 1P8

E-mail address: buck@instr.cnc.bcc.cdn