Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Comparison of the lengths of the continued fractions of $ \sqrt D$ and $ \frac12(1+\sqrt D)$


Authors: Kenneth S. Williams and Nicholas Buck
Journal: Proc. Amer. Math. Soc. 120 (1994), 995-1002
MSC: Primary 11J70
DOI: https://doi.org/10.1090/S0002-9939-1994-1169053-7
MathSciNet review: 1169053
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ D$ denote a positive nonsquare integer such that $ D \equiv 1\,(\bmod 4)$. Let $ l(\sqrt D )$ (resp. $ l(\tfrac{1} {2}(1 + \sqrt D ))$) denote the length of the period of the continued fraction expansion of $ \sqrt D $ (resp. $ \tfrac{1} {2}(1 + \sqrt D ))$). Recently Ishii, Kaplan, and Williams (On Eisenstein's problem, Acta Arith. 54 (1990), 323-345) established inequalities between $ l(\sqrt D )$ and $ l(\tfrac{1} {2}(1 + \sqrt D ))$. In this note it is shown that these inequalities are best possible in a strong sense.


References [Enhancements On Off] (What's this?)

  • [1] I. G. deMille, The continued fraction for certain $ (1 + \sqrt D )/2$ with applications to units and classnumbers, M. Sc. thesis (Supervisor Dr. K. S. Williams), Carleton University, Ottawa, Ontario, Canada, 1988.
  • [2] F. Halter-Koch, Einige periodische Kettenbruchentwicklungen und Grundeinheiten quadratischer Ordungen, preprint. MR 1049893 (91h:11115)
  • [3] N. Ishii, P. Kaplan, and K. S. Williams, On Eisenstein's problem, Acta Arith. 54 (1990), 323-345. MR 1058895 (91f:11024)
  • [4] C. Levesque and G. Rhin, A few classes of periodic continued fractions, Utilitas Math. 30 (1986), 79-107. MR 864813 (88b:11072)
  • [5] C. Levesque, Continued fraction expansions and fundamental units, J. Math. Phys. Sci. 22 (1988), 11-44. MR 940385 (89f:11021)
  • [6] O. Perron, Die Lehre von den Kettenbrüchen, Bd. 1, Teubner, Leipzig, 1954. MR 0064172 (16:239e)
  • [7] H. C. Williams, A note on the period length of the continued fraction expansion of certain $ \sqrt D $, Utilitas Math. 28 (1985), 201-209. MR 821957 (87e:11016)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11J70

Retrieve articles in all journals with MSC: 11J70


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1169053-7
Keywords: Continued fractions
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society