Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

On the isometries of $ H\sp \infty\sb E(B)$


Authors: Yasuo Matsugu and Takahiko Yamada
Journal: Proc. Amer. Math. Soc. 120 (1994), 1107-1112
MSC: Primary 46E40; Secondary 47B38
MathSciNet review: 1169883
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ E$ be a complex Banach space on which all the multipliers are trivial. Let $ H_E^\infty (B)$ denote the Banach space of $ E$-valued bounded holomorphic functions on the open unit ball $ B$ of $ {{\mathbf{C}}^n}$. In this paper we prove that every linear isometry $ T$ of $ H_E^\infty (B)$ onto itself is of the form $ (TF)(z) = \mathfrak{T}F(\varphi (z))$ for all $ F \in H_E^\infty (B),\;z \in B$, where $ \mathfrak{T}$ is a linear isometry of $ E$ onto itself and $ \varphi $ is a biholomorphic map of $ B$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46E40, 47B38

Retrieve articles in all journals with MSC: 46E40, 47B38


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1169883-1
Article copyright: © Copyright 1994 American Mathematical Society