Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

A weighted inequality for the Kakeya maximal operator


Author: A. M. Vargas
Journal: Proc. Amer. Math. Soc. 120 (1994), 1101-1105
MSC: Primary 42B25
MathSciNet review: 1170548
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {\mathcal{K}_\delta }$ be the Kakeya Maximal Operator defined as the supremum of averages over parallelepipeds of eccentricity $ \delta $. We show that $ {\mathcal{K}_\delta }$ satisfies $ \vert\vert{\mathcal{K}_\delta }f\vert{\vert _{{L^p}(\omega )}} \leqslant {C_{n... ...)^{{\alpha _n}}}\vert\vert f\vert{\vert _{{L^p}({\mathcal{K}_\delta }\omega )}}$ for all $ p \leqslant (n + 1)/2$ with some constants $ {C_{n,p}},\;{\alpha _n}$, independent of $ f$ and the weight $ \omega $.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42B25

Retrieve articles in all journals with MSC: 42B25


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1994-1170548-0
PII: S 0002-9939(1994)1170548-0
Keywords: Maximal functions, weighted inequalities
Article copyright: © Copyright 1994 American Mathematical Society