Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

An infinite loop space machine for theories with noncontractible multiplication


Author: Igor Kříž
Journal: Proc. Amer. Math. Soc. 120 (1994), 1289-1298
MSC: Primary 55P47
DOI: https://doi.org/10.1090/S0002-9939-1994-1172959-6
MathSciNet review: 1172959
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we develop a new kind of infinite loop space machine starting with theories with possibly noncontractible multiplication. As an application, we give an example of an infinite loop space machine with 'coherent' homotopy inverses.


References [Enhancements On Off] (What's this?)

  • [1] J. M. Boardman and R. M. Vogt, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Math., vol. 347, Springer, Berlin, 1973. MR 0420609 (54:8623a)
  • [2] J. Caruso and S. Waner, An approximation to $ {\Omega ^n}{\Sigma ^n}X$, Trans. Amer. Math. Soc. 265 (1981), 147-162. MR 607113 (82i:55006)
  • [3] I. Kriz, The infinite loop spaces of Thom spectra, J. Pure Appl. Algebra 81 (1992), 49-62. MR 1173823 (93j:55015)
  • [4] J. P. May, The geometry of iterated loop spaces, Lecture Notes in Math., vol. 271, Springer, Berlin, 1972. MR 0420610 (54:8623b)
  • [5] -, $ {E_\infty }$ spaces, group completions and permutative categories, London Math. Soc. Lecture Note Ser., vol. 11, Cambridge Univ. Press, Cambridge and New York, 1974. MR 0339152 (49:3915)
  • [6] -, Multiplicative infinite loop space theory, J. Pure Appl. Algebra 26 (1982), 1-69. MR 669843 (84c:55013)
  • [7] -, Simplicial objects in algebraic topology, Van Nostrand, New York, 1967. MR 0222892 (36:5942)
  • [8] J. P. May and R. Thomason, The uniqueness of infinite loop space machines, Topology 17 (1978), 205-224. MR 508885 (80g:55015)
  • [9] J. Milnor, The realization of a semi-simplicial complex, Ann. of Math. (2) 65 (1957), 357-362. MR 0084138 (18:815d)
  • [10] D. Quillen, Higher algebraic $ K$-theory. I, Lecture Notes in Math., vol. 341, Springer, Berlin, 1973, pp. 85-147. MR 0338129 (49:2895)
  • [11] R. Schwänzl and R. M. Vogt, Homotopy ring spaces and their matrix rings, Proceedings of the Poznan 1989 Algebraic Topology Conference, Lecture Notes in Math., vol. 1474, Springer-Verlag, New York, 1991, pp. 254-272. MR 1133906 (93b:55012)
  • [12] -, $ {E_\infty }$-Monoids with coherent homotopy inverses are abelian groups, Topology 28 (1989), 481-484. MR 1030988 (91e:55013)
  • [13] G. Segal, Categories and cohomology theories, Topology 13 (1974), 293-312. MR 0353298 (50:5782)
  • [14] R. J. Steiner, Infinite loop structures on the algebraic $ K$-theory of spaces, Math. Proc. Cambridge Philos. Soc. 90 (1981), 85-111. MR 611287 (82m:55013)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55P47

Retrieve articles in all journals with MSC: 55P47


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1172959-6
Keywords: Infinite loop spaces, theories
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society