Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



The existence question in the calculus of variations: a density result

Authors: Arrigo Cellina and Carlo Mariconda
Journal: Proc. Amer. Math. Soc. 120 (1994), 1145-1150
MSC: Primary 49J05
MathSciNet review: 1174488
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show the existence of a dense subset $ \mathcal{D}$ of $ \mathcal{C}(\mathbb{R})$ such that, for $ g$ in it, the problem

$\displaystyle {\text{minimum}}\;\int_0^T {g(x(t))dt + \int_0^T {h(x'(t))dt,\;x(0) = a,\;x(T) = b} } $

admits a solution for every lower semicontinuous $ h$ satisfying growth conditions

References [Enhancements On Off] (What's this?)

  • [A-C] Micol Amar and Arrigo Cellina, On passing to the limit for non-convex variational problems, Asymptotic Anal. 9 (1994), no. 2, 135–148. MR 1288614
  • [A-M] Micol Amar and Carlo Mariconda, A nonconvex variational problem with constraints, SIAM J. Control Optim. 33 (1995), no. 1, 299–307. MR 1311671,
  • [C-C] A. Cellina and G. Colombo, On a classical problem of the calculus of variations without convexity assumptions, Ann. Inst. H. Poincaré Anal. Non Linéaire 7 (1990), no. 2, 97–106 (English, with French summary). MR 1051230
  • [Ce] Lamberto Cesari, Optimization—theory and applications, Applications of Mathematics (New York), vol. 17, Springer-Verlag, New York, 1983. Problems with ordinary differential equations. MR 688142
  • [E-T] Ivar Ekeland and Roger Temam, Analyse convexe et problèmes variationnels, Dunod; Gauthier-Villars, Paris-Brussels-Montreal, Que., 1974 (French). Collection Études Mathématiques. MR 0463993
    Ivar Ekeland and Roger Temam, Convex analysis and variational problems, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1976. Translated from the French; Studies in Mathematics and its Applications, Vol. 1. MR 0463994
  • [M] P. Marcellini, Alcune osservazioni sull'esistenza del minimo di integrali del calcolo delle variazioni senza ipotesi di convessitá, Rend. Mat. (2) 13 (1980), 271-281.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 49J05

Retrieve articles in all journals with MSC: 49J05

Additional Information

Keywords: Calculus of variations, subdifferential, relaxed problem, bipolar, Liapunov, measurable partition, equi--integrability
Article copyright: © Copyright 1994 American Mathematical Society