The conjugacy problem for HNN extensions with infinite cyclic associated groups

Authors:
K. J. Horadam and G. E. Farr

Journal:
Proc. Amer. Math. Soc. **120** (1994), 1009-1015

MSC:
Primary 20F10; Secondary 20E06, 20M18

MathSciNet review:
1185267

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Under suitable recursive conditions, the conjugacy problem for HNN extensions of the form is solvable if and only if the inverse subsemigroup generated by has solvable extended word problem in the semigroup

Furthermore, is isomorphic to the direct sum of countably many copies of the *bicyclic* semigroup, which has a central place in the theory of inverse semigroups.

This new approach to the conjugacy problem is used to determine several classes of HNN extensions with infinitely many stable letters and solvable conjugacy problem.

**[1]**Michael Anshel,*Conjugate powers in HNN groups*, Proc. Amer. Math. Soc.**54**(1976), 19–23. MR**0393249**, 10.1090/S0002-9939-1976-0393249-4**[2]**Michael Anshel,*The conjugacy problem for HNN groups and the word problem for commutative semigroups*, Proc. Amer. Math. Soc.**61**(1976), no. 2, 223–224. MR**0422457**, 10.1090/S0002-9939-1976-0422457-9**[3]**Michael Anshel and Kenneth McAloon,*Reducibilities among decision problems for HNN groups, vector addition systems and subsystems of Peano arithmetic*, Proc. Amer. Math. Soc.**89**(1983), no. 3, 425–429. MR**715859**, 10.1090/S0002-9939-1983-0715859-8**[4]**G. E. Farr and K. J. Horadam,*Edgepath semigroups and the extended word problem*(in preparation).**[5]**K. J. Horadam,*The conjugacy problem for graph products with central cyclic edge groups*, Proc. Amer. Math. Soc.**91**(1984), no. 3, 345–350. MR**744626**, 10.1090/S0002-9939-1984-0744626-5**[6]**J. M. Howie,*An introduction to semigroup theory*, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1976. L.M.S. Monographs, No. 7. MR**0466355****[7]**P. R. Jones,*The lattice of inverse subsemigroups of a reduced inverse semigroup*, Glasgow Math. J.**17**(1976), no. 2, 161–172. MR**0409695****[8]**Jody Meyer Lockhart,*An HNN-extension with cyclic associated subgroups and with unsolvable conjugacy problem*, Trans. Amer. Math. Soc.**313**(1989), no. 1, 331–345. MR**992601**, 10.1090/S0002-9947-1989-0992601-7**[9]**Jody Meyer Lockhart,*The conjugacy problem for graph products with finite cyclic edge groups*, Proc. Amer. Math. Soc.**117**(1993), no. 4, 897–898. MR**1116266**, 10.1090/S0002-9939-1993-1116266-5**[10]**Hartley Rogers Jr.,*Theory of recursive functions and effective computability*, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1967. MR**0224462****[11]**Jean-Pierre Serre,*Trees*, Springer-Verlag, Berlin-New York, 1980. Translated from the French by John Stillwell. MR**607504**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
20F10,
20E06,
20M18

Retrieve articles in all journals with MSC: 20F10, 20E06, 20M18

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1994-1185267-4

Keywords:
Conjugacy problem,
HNN extension,
extended word problem,
inverse semigroup,
bicyclic semigroup

Article copyright:
© Copyright 1994
American Mathematical Society