Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On Hosszú's functional equation in distributions


Author: E. L. Koh
Journal: Proc. Amer. Math. Soc. 120 (1994), 1123-1129
MSC: Primary 39B52; Secondary 46F10
DOI: https://doi.org/10.1090/S0002-9939-1994-1186990-8
MathSciNet review: 1186990
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, the Hosszú functional equation

$\displaystyle f(x + y - xy) + g(xy) = h(x) + k(y)$

is reformulated in the domain of distributions. Its general solution is found which includes Fenyö's solution as a special case.

References [Enhancements On Off] (What's this?)

  • [1] N. H. Abel, Über die Funktionen die der Gleichung $ \phi x + \phi y = \phi (xfy + yfx)$ genug thun, J. Reine Angew. Math. 2 (1827), 386-394.
  • [2] J. Aczel, Grundrisseiner allgemeinen Behandlung von einigen Funktionalgleichungstypen, Publ. Math. Debrecen 3 (1953), 119-132. MR 0062333 (15:962g)
  • [3] -, Lectures on functional equations and their applications, Academic Press, New York, 1966. MR 0208210 (34:8020)
  • [4] D. Hilbert, Mathematische probleme, Nachr. Ges. Wiss. Göttingen (1900), 253-297; Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, RI, 1976, p. 14.
  • [5] A. Jarai, On regular solutions of functional equations, Aequationes Math. 30 (1986), 21 -54. MR 837038 (87g:39010)
  • [6] -, Regularity property of functional equations, Aequationes Math. 25 (1982), 52-66. MR 716377 (84k:39015)
  • [7] H. Swiatak, On the regularity of the distributional and continuous solutions of the functional equation $ \sum\nolimits_{i = 1}^k {{a_i}(x,t)f(x + {\phi _i}(t)) = b(x,t)} $, Aequationes Math. 1 (1968), 6-19. MR 0279474 (43:5196)
  • [8] A. Tsutsumi and S. Haruki, The regularity of solutions of functional equations and hypoellipticity, Functional Equations, History, Applications & Theory, Reidel, Boston, MA, 1984, pp. 99-112. MR 954203 (89e:39012)
  • [9] L. Hörmander, The analysis of linear partial differential operators. I, Springer Verlag, Berlin and New York, 1983. MR 717035 (85g:35002a)
  • [10] L. Schwartz, Théorie des distributions, Hermann, Paris, 1966. MR 0209834 (35:730)
  • [11] I. Fenyö, Über eine lösungsmethode gewisser funktionalgleichungen, Acta Math. Hungar 7 (1957), 383-396.
  • [12] M. Neagu, About the Pompeiu equation in distributions, Inst. Politehn. "Traian Vuia" Timisoara. Lucrar. Sem. Mat. Fiz. 1984, 62-66. MR 783941 (86i:46044)
  • [13] J. A. Baker, Functional equations, tempered distributions and Fourier transforms, Trans. Amer. Math. Soc. 315 (1989), 57-68. MR 979965 (90k:39006)
  • [14] -, Functional equations, distributions and approximate identities, Canad. J. Math. 42 (1990), 696-708. MR 1074230 (92c:39016)
  • [15] E. L. Koh, The Cauchy functional equations in distributions, Proc. Amer. Math. Soc. 106 (1989), 641-647. MR 942634 (89k:39015)
  • [16] E. Y. Deeba and E. L. Koh, The Pexider functional equations in distributions, Canad. J. Math. 42 (1990), 304-314. MR 1051731 (91i:39002)
  • [17] -, D'Alembert functional equations in distributions, Proc. Amer. Math. Soc. 116 (1992), 157-164. MR 1100648 (92k:46066)
  • [18] -, Coupled functional equations in distributions, Indian J. Math., Singh Memorial Volume 33 (1991), 275-285. MR 1335362 (96j:39034)
  • [19] I. Fenyö, On the general solution of a functional equation in the domain of distributions, Aequationes Math. 3 (1969), 236-246. MR 0611691 (58:29538)
  • [20] J. A. Baker, On a functional equation of Aczél and Chung, Aequationes Math, (to appear).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 39B52, 46F10

Retrieve articles in all journals with MSC: 39B52, 46F10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1186990-8
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society