Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Solvability of the equation $ \Delta\sb gu+\tilde{S}u\sp \sigma=Su$ on manifolds


Author: Jun Jie Tang
Journal: Proc. Amer. Math. Soc. 121 (1994), 83-92
MSC: Primary 53C21; Secondary 35J60, 53C25, 58G30
MathSciNet review: 1174496
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For the negative Yamabe invariant and $ \tilde S \leq 0$, we obtain that the equation $ {\Delta _g}u + \tilde S{u^\sigma } = Su$ has a positive solution if and only if the supremum of the Yamabe invariant over all smooth coverings of the 0-level set of $ \tilde S$ is positive.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C21, 35J60, 53C25, 58G30

Retrieve articles in all journals with MSC: 53C21, 35J60, 53C25, 58G30


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1994-1174496-1
PII: S 0002-9939(1994)1174496-1
Keywords: Yamabe invariant, first eigenvalue, 0-level set, smooth covering
Article copyright: © Copyright 1994 American Mathematical Society