A HOMOGENEOUS, GLOBALLY SOLVABLE
DIFFERENTIAL OPERATOR ON A NILPOTENT LIE GROUP
WHICH HAS NO TEMPERED FUNDAMENTAL SOLUTION

DETLEF MÜLLER

(Communicated by Jonathan M. Rosenberg)

Dedicated to the memory of Lawrence Corwin

Abstract. We present an example of a homogeneous, left-invariant differential
operator on the Heisenberg group \(H_3 \) which admits fundamental solutions but
no tempered ones. This answers a question raised by Corwin in the negative.

Assume that \(N \) is a connected, simply connected nilpotent Lie group with Lie
algebra \(\mathfrak{n} \), and let \(L \in \mathfrak{U}(\mathfrak{n}) \) be a left-invariant differential operator on \(N \). If
\(N \) is abelian, any such \(L \) can be considered as a constant coefficient differential
operator on some Euclidean space \(\mathbb{R}^n \) and, by the theorem of Malgrange and
Ehrenpreis (see [H2]), has a fundamental solution \(F \in \mathcal{D}'(\mathbb{R}^n) \), i.e., \(LF = \delta \),
where \(\delta \) denotes the point measure at the identity. In fact, it was proved later
by Hörmander [H1] and Lojasiewicz [L] that one can even find a tempered
fundamental solution \(F \in \mathcal{S}'(\mathbb{R}^n) \).

The situation becomes drastically different if \(N \) is nonabelian, since then
there exist many operators in \(\mathfrak{U}(\mathfrak{n}) \) which are not even locally solvable. Assume
in the sequel that \(N \) admits a one-parameter family \(\{ \delta_r \}_{r > 0} \) of automorphic
dilations (see [FS]) and that \(L \) is homogeneous, i.e., \(L(\phi \circ \delta_r) = r^m(L\phi) \circ \delta_r \), for
some \(m > 0 \) and every \(\phi \in \mathcal{D}(N) \), \(r > 0 \). Then it is at least true that various
notions of solvability coincide for \(L \). For instance, \(L \) is locally solvable at
some point of \(N \) if and only if \(LC^\infty(N) = C^\infty(N) \), if and only if \(L \) has a
fundamental solution \(F \in \mathcal{S}'(N) \) (see, e.g., [B, M1]). Moreover, if \(L^T \), the
transpose of \(L \), is hypoelliptic, then the same is true of the operator \(LL^T \),
as can be seen by Helffer-Nourrigat’s theorem [HN], and one can make use of
the homogeneity of \(L \) in order to prove that \(LL^T \), hence also \(L \), has even a
tempered fundamental solution [F, G].

So, a natural question, which seems to have been open hitherto, is whether
any solvable, homogeneous, left-invariant differential operator or, more gener-
ally, every globally solvable left-invariant differential operator on a nilpotent Lie
group has a tempered fundamental solution. In the latter form, this question
was raised by Corwin in [C].

The purpose of this note is to present an example on the 7-dimensional...
Heisenberg group H_3 which answers this question in the negative, even for homogeneous operators.

Namely, if $X_1, X_2, X_3, Y_1, Y_2, Y_3, U$ denotes the standard basis of the Lie algebra \mathfrak{h}_3 of H_3 (with nontrivial brackets $[X_j, Y_j] = U$, $j = 1, 2, 3$), we set

$$L = (X_2^2 + Y_1^2) - \lambda (X_2^2 + Y_2^2) + Y_3^2, \quad \lambda \in \mathbb{R}\{0\}.$$

Adopting the notation used throughout [MR1, MR2, M2], we have $L = \Delta_S$, where $S \in \mathfrak{sp}(3, \mathbb{R})$ is given by the matrix

$$S = \begin{pmatrix} H & 0 \\ 0 & N \end{pmatrix}, \quad H = \begin{pmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & \lambda \\ 1 & 0 & 0 & 0 \\ 0 & -\lambda & 0 & 0 \end{pmatrix}, \quad N = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

with respect to the basis $X_1, X_2, Y_1, Y_2, X_3, Y_3$. Since S is not semisimple, L is locally solvable for every $\lambda \in \mathbb{R}$ by [MR2, Theorem (i.3)].

Now assume there is some $F \in \mathcal{S}'(H_3)$ such that $LF = \delta$. If (z, u), with $z \in \mathbb{R}^6$, $u \in \mathbb{R}$, denote the usual coordinates of H_3, we define as in [MR1]

$$F_u(z, \mu) := f^\mu(z) := \int_{\mathbb{R}} f(z, u) e^{-2\pi i \mu u} du, \quad \mu \in \mathbb{R},$$

for $f \in \mathcal{S}(H_3)$. This partial Fourier transform turns L into the “twisted” differential operator L^μ given by the formula

$$L^\mu f(z) := (L f)^\mu,$$

if $f \in \mathcal{S}(H_3)$. Let $\delta_r(z, u) = (rz, r^2u)$ denote the usual dilations on H_3, and fix a real function $\chi \in C_0^\infty(\mathbb{R}^+)$ with support contained in the interval $[1, 2]$ and $\int \chi(r) dr = 1$. For $\phi \in \mathcal{S}(\mathbb{R}^6)$ and $j = 0, 1$, we set

$$A_j \phi(z, u) := \int_{0}^{\infty} \phi(r^{1/2}z) e^{-2\pi iru} \chi(r) r^j dr.$$

Then A_j defines a continuous linear operator from $\mathcal{S}(\mathbb{R}^6)$ into $\mathcal{S}(H_3)$, a fact which follows easily from the formula

$$A_j \phi = F_u(E_j \phi),$$

where $E_j \phi$ is defined by

$$E_j \phi(z, \mu) := \phi(\mu^{1/2}z) \chi(\mu) \mu^j.$$

Moreover, from (3) one easily sees that

$$L F_u(E_0 \phi) = F_u(E_1(L^T \phi));$$

hence

$$L A_0 \phi = A_1(L^T \phi),$$

where we have set $L := L^1$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Let $A^T \in \mathcal{S}'(\mathbb{R}^6)$ denote the adjoint operator to A_1, and let $K \in \mathcal{S}'(\mathbb{R}^6)$ be given by $K = A^T(F)$. Then, by (4),
\[
\langle \hat{L}K, \varphi \rangle = \langle K, \hat{L}^T \varphi \rangle = \langle F, A_1 \hat{L}^T \varphi \rangle = \langle F, L \varphi \rangle
\]
\[
= \langle LF, A \varphi \rangle = (A_0 \varphi)(0),
\]
since $L = L^T$. Moreover, since
\[
(A_0 \varphi)(0) = \varphi(0) \int_0^\infty \chi(r) \, dr = \varphi(0),
\]
we see that $\hat{L}K = \delta$, i.e., we have proved the following

Lemma 1. Assume L (given by (1)) has a tempered fundamental solution. Then the same is true of \hat{L}.

Finally, we can invoke [M2] in order to prove

Proposition 2. Let L be given by (1). Then:

(i) L has a fundamental solution $F \in \mathcal{S}'(\mathbb{H})$ for every $\lambda \in \mathbb{R}$.

(ii) If L has a tempered fundamental solution $F \in \mathcal{S}'(\mathbb{H})$, then there are constants $C > 0$, $r \in \mathbb{N}$ such that
\[
|\lambda - p/q| > Cq^{-r}
\]
whenever p and q are odd positive integers such that $\lambda - p/q > 0$. In particular, L has no tempered fundamental solution, if $\lambda = \lambda_0$, where $\lambda_0 := \sum_{k=0}^\infty 3^{-k!}$.

Proof. It has been shown in [MR2, Proposition 3.9] that the Liouville number λ_0 violates condition (5), so there remains only to prove (ii).

But, in the notation of [M2], the matrix S associated to L is of type $(E1)$, and condition (5) is equivalent to [M2, Theorem 1.1, condition (1.8)]. Therefore, by [M2, Corollary 3.2 and Theorem 1.1], L can have a tempered fundamental solution only if (5) holds; hence (ii) follows from Lemma 1. Q.E.D.

Remark 3. In [M1] we showed that a homogeneous operator $L \in \mathfrak{U}(\mathbb{N})$ is not locally solvable if there is a sequence $\{\psi_j\}_j \subset \mathcal{S}(\mathbb{N})$ such that $\psi_j(0) = 1$ for every j and
\[
\lim_{j \to \infty} \|\psi_j\|_{(\mathbb{N})} \|L^T \psi_j\|_{(\mathbb{N})} = 0
\]
for every Schwartz-norm $\|\cdot\|_{(\mathbb{N})}$. This condition relaxes the necessary condition for local solvability in [CR] and was crucial in [MR2] but may look somewhat unnatural. One is tempted to ask if (6) could be replaced by
\[
\lim_{j \to \infty} \|L^T \psi_j\|_{(\mathbb{N})} = 0.
\]
However, Proposition 2 implies that this is not possible, for, if we could replace (6) by (7), then local solvability of L would imply an estimate of the form
\[
|\psi(0)| \leq \|L^T \psi\|_{(\mathbb{N})}, \quad \psi \in \mathcal{S}(\mathbb{N}),
\]
for some Schwartz-norm $\|\cdot\|_{(\mathbb{N})}$. And, by the Hahn-Banach theorem, this would mean that L had a tempered fundamental solution.

Acknowledgment

I wish to thank the referee for several useful comments on the paper.
REFERENCES

Fakultät für Mathematik, Universität Bielefeld, D-4800 Bielefeld 1, Germany
Current address: Département de Mathématiques, Université Louis Pasteur, 7, rue René Descartes, F-67084 Strasbourg Cedex, France
E-mail address: dmuller@math.u-strasbg.fr