Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A converse to Stanley's conjecture for $ {\rm Sl}\sb 2$

Author: Michel Van den Bergh
Journal: Proc. Amer. Math. Soc. 121 (1994), 47-51
MSC: Primary 20G05; Secondary 13A50
MathSciNet review: 1181176
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove, in the case of Sl$ _2$, a converse to Stanley's conjecture about Cohen-Macaulayness of invariant modules for reductive algebraic groups.

References [Enhancements On Off] (What's this?)

  • [1] B. Broer, On the generating functions associated to a system of binary forms, Indag. Math. (N.S.) 1 (1990), no. 1, 15-25. MR 1054762 (91d:13008)
  • [2] M. Van den Bergh, Cohen-Macaulayness of semi-invariants for tori, Trans. Amer. Math. Soc. 336 (1993), 557-580. MR 1087057 (93f:14008)
  • [3] -, Trace rings of generic matrices are Cohen-Macaulay, J. Amer. Math. Soc. 2 (1989), no. 4, 775-799. MR 1001850 (90j:14065)
  • [4] -, Cohen-Macaulayness of modules of covariants, Invent. Math. 106 (1991), 389-409. MR 1128219 (92m:14063)
  • [5] R. P. Stanley, Combinatorics and invariant theory, Proc. Sympos. Pure Math., vol. 34, Amer. Math. Soc., Providence, RI, 1979. MR 525334 (80e:15020)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20G05, 13A50

Retrieve articles in all journals with MSC: 20G05, 13A50

Additional Information

Keywords: Covariants, Cohen-Macaulayness
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society