Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Density of infimum-stable convex cones


Author: João B. Prolla
Journal: Proc. Amer. Math. Soc. 121 (1994), 175-178
MSC: Primary 46E05; Secondary 41A65, 46A55
DOI: https://doi.org/10.1090/S0002-9939-1994-1186134-2
MathSciNet review: 1186134
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let X be a compact Hausdorff space and let A be a linear subspace of $ C(X;\mathbb{R})$ containing the constant functions, and separating points from probability measures. Then the inf-lattice generated by A is uniformly dense in $ C(X;\mathbb{R})$. We show that this is a corollary of the Choquet-Deny Theorem, thus simplifying the proof and extending to the nonmetric case a result of McAfee and Reny.


References [Enhancements On Off] (What's this?)

  • [1] G. Choquet and J. Deny, Ensembles semi-réticulés et ensembles réticulés de fonctions continues, J. Math. Pures Appl. 36 (1957), 179-189. MR 0094606 (20:1119)
  • [2] H. O. Flösser, R. Irmisch, and W. Roth, Infimum-stable convex cones and approximation, Proc. London Math. Soc. (3) 42 (1981), 104-120. MR 602125 (82b:46009)
  • [3] R. P. McAfee and P. Reny, A Stone-Weierstrass theorem without closure under suprema, Proc. Amer. Math. Soc. 114 (1992), 61-67. MR 1091186 (92c:41033)
  • [4] L. Nachbin, Elements of approximation theory, Van Nostrand, Princeton, NJ, 1967; reprinted by Krieger, Huntington, NY, 1976. MR 0217483 (36:572)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46E05, 41A65, 46A55

Retrieve articles in all journals with MSC: 46E05, 41A65, 46A55


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1994-1186134-2
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society