On the medians of gamma distributions and an equation of Ramanujan

Author:
K. P. Choi

Journal:
Proc. Amer. Math. Soc. **121** (1994), 245-251

MSC:
Primary 62E15; Secondary 33B15, 41A58

MathSciNet review:
1195477

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For , let denote the median of the distribution. We prove that . These bounds are sharp. There is an intimate relationship between and an equation of Ramanujan. Based on this relationship, we derive the asymptotic expansion of as follows:

Let median denote the median of a Poisson random variable with mean , where the median is defined to be the least integer *m* such that . We show that the bounds on imply

**[1]**K. O. Bowman and L. R. Shenton,*Binomial and Poisson mixtures, maximum likelihood, and Maple code*, Far East J. Theor. Stat.**20**(2006), no. 1, 73–95. MR**2279464****[2]**Jeesen Chen and Herman Rubin,*Bounds for the difference between median and mean of gamma and Poisson distributions*, Statist. Probab. Lett.**4**(1986), no. 6, 281–283. MR**858317**, 10.1016/0167-7152(86)90044-1**[3]**H. Dinges,*Special cases of second order Wiener germ approximations*, Probab. Theory Related Fields**83**(1989), no. 1-2, 5–57. MR**1012493**, 10.1007/BF00333142**[4]**A. T. Doodson,*Relation of the mode, median and mean in frequency curves*, Biometrika**11**(1971), 425-429.**[5]**Donald E. Knuth,*The art of computer programming*, 2nd ed., Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1975. Volume 1: Fundamental algorithms; Addison-Wesley Series in Computer Science and Information Processing. MR**0378456****[6]**J. C. W. Marsaglia,*The incomplete Gamma function and Ramanujan's rational approximation to*, J. Statist. Comput. Simulation**24**(1986), 163-168.**[7]**S. Ramanujan, J. Indian Math. Soc.**3**(1911), 151-152.**[8]**-,*Collected Papers*, Chelsea, New York, 1927.**[9]**G. Szegö,*Über einige von S. Ramanujan gestelle Aufgaben*, J. London Math. Soc.**3**(1928), 225-232.**[10]**G. N. Watson,*Theorems stated by Ramanujan*(V):*Approximations connected with*, Proc. London Math. Soc. (2)**29**(1927), 293-308.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
62E15,
33B15,
41A58

Retrieve articles in all journals with MSC: 62E15, 33B15, 41A58

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1994-1195477-8

Keywords:
Median,
Gamma distribution,
Poisson distribution,
chi-square distribution,
Poisson-Gamma relation,
Ramanujan's equation

Article copyright:
© Copyright 1994
American Mathematical Society